Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count array elements that divide the sum of all other elements

  • Difficulty Level : Basic
  • Last Updated : 28 Oct, 2021

Given an array arr[], the task is to count the number of elements from the array which divide the sum of all other elements.

Examples:  

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {3, 10, 4, 6, 7} 
Output:
3 divides (10 + 4 + 6 + 7) i.e. 27 
10 divides (3 + 4 + 6 + 7) i.e. 20 
6 divides (3 + 10 + 4 + 7) i.e. 24



Input: arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
Output: 2  

Naive Approach: Run two-loop from 0 to N, calculate the sum of all elements except the current element and if this element divides that sum, then increment the count.
Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the count
// of the required numbers
int countNum(int N, int arr[])
{
    // To store the count of required numbers
    int count = 0;
    for (int i = 0; i < N; i++) {
 
        // Initialize sum to 0
        int sum = 0;
        for (int j = 0; j < N; j++) {
 
            // If current element and the
            // chosen element are same
            if (i == j)
                continue;
 
            // Add all other numbers of array
            else
                sum += arr[j];
        }
 
        // If sum is divisible by the chosen element
        if (sum % arr[i] == 0)
            count++;
    }
 
    // Return the count
    return count;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 10, 4, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countNum(n, arr);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
// Function to return the count
// of the required numbers
static int countNum(int N, int arr[])
{
    // To store the count of required numbers
    int count = 0;
    for (int i = 0; i < N; i++)
    {
 
        // Initialize sum to 0
        int sum = 0;
        for (int j = 0; j < N; j++)
        {
 
            // If current element and the
            // chosen element are same
            if (i == j)
                continue;
 
            // Add all other numbers of array
            else
                sum += arr[j];
        }
 
        // If sum is divisible by the chosen element
        if (sum % arr[i] == 0)
            count++;
    }
 
    // Return the count
    return count;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 3, 10, 4, 6, 7 };
    int n = arr.length;
    System.out.println(countNum(n, arr));
}
}
 
// This code is contributed by Code_Mech

Python3




# Python3 implementation of the approach
 
# Function to return the count
# of the required numbers
def countNum(N, arr):
 
    # To store the count of
    # required numbers
    count = 0
 
    for i in range(N):
 
        # Initialize sum to 0
        Sum = 0
        for j in range(N):
 
            # If current element and the
            # chosen element are same
            if (i == j):
                continue
 
            # Add all other numbers of array
            else:
                Sum += arr[j]
 
        # If Sum is divisible by the
        # chosen element
        if (Sum % arr[i] == 0):
            count += 1
     
    # Return the count
    return count
 
# Driver code
arr = [3, 10, 4, 6, 7]
n = len(arr)
print(countNum(n, arr))
 
# This code is contributed
# by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the count
// of the required numbers
static int countNum(int N, int []arr)
{
    // To store the count of required numbers
    int count = 0;
    for (int i = 0; i < N; i++)
    {
 
        // Initialize sum to 0
        int sum = 0;
        for (int j = 0; j < N; j++)
        {
 
            // If current element and the
            // chosen element are same
            if (i == j)
                continue;
 
            // Add all other numbers of array
            else
                sum += arr[j];
        }
 
        // If sum is divisible by the chosen element
        if (sum % arr[i] == 0)
            count++;
    }
 
    // Return the count
    return count;
}
 
// Driver code
public static void Main()
{
    int []arr = { 3, 10, 4, 6, 7 };
    int n = arr.Length;
    Console.WriteLine(countNum(n, arr));
}
}
 
// This code is contributed by inder_verma..

PHP




<?php
// Php implementation of the approach
 
// Function to return the count
// of the required numbers
function countNum($N, $arr)
{
// To store the count of
// required numbers
$count = 0;
 
for ($i=0;$i<$N;$i++) {
// Initialize sum to 0
    $Sum = 0;
    for ($j = 0; $j < $N; $j++) {
        // If current element and the
        // chosen element are same
        if ($i == $j)
            continue;
 
        // Add all other numbers of array
        else
            $Sum += $arr[$j];
    }
    // If Sum is divisible by the
    // chosen element
    if ($Sum % $arr[$i] == 0)
        $count += 1;
}
// Return the count
    return $count;
}
// Driver code
$arr = array(3, 10, 4, 6, 7);
$n = count($arr);
echo countNum($n, $arr);
 
// This code is contributed
// by Srathore
?>

Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to return the count
    // of the required numbers
    function countNum(N, arr)
    {
        // To store the count of required numbers
        let count = 0;
        for (let i = 0; i < N; i++) {
 
            // Initialize sum to 0
            let sum = 0;
            for (let j = 0; j < N; j++) {
 
                // If current element and the
                // chosen element are same
                if (i == j)
                    continue;
 
                // Add all other numbers of array
                else
                    sum += arr[j];
            }
 
            // If sum is divisible by the chosen element
            if (sum % arr[i] == 0)
                count++;
        }
 
        // Return the count
        return count;
    }
     
    let arr = [ 3, 10, 4, 6, 7 ];
    let n = arr.length;
    document.write(countNum(n, arr));
     
    // This code is contributed by vaibhavrabadiya117
</script>
Output: 
3

 

Time Complexity: O(N2)
 

Efficient Approach: Run a single loop from 0 to N, calculate the sum of all the elements. Now run another loop from 0 to N and if (sum – arr[i]) % arr[i] = 0 then increment the count.
Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the count
// of the required numbers
int countNum(int N, int arr[])
{
    // Initialize sum and count to 0
    int sum = 0, count = 0;
 
    // Calculate sum of all
    // the array elements
    for (int i = 0; i < N; i++)
        sum += arr[i];
 
    for (int i = 0; i < N; i++)
 
        // If current element satisfies the condition
        if ((sum - arr[i]) % arr[i] == 0)
            count++;
 
    // Return the count of required elements
    return count;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 10, 4, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countNum(n, arr);
 
    return 0;
}

Java




// Java implementation of the approach
 
class GFG
{
 
    // Function to return the count
    // of the required numbers
    static int countNum(int N, int arr[])
    {
        // Initialize sum and count to 0
        int sum = 0, count = 0;
 
        // Calculate sum of all
        // the array elements
        for (int i = 0; i < N; i++)
        {
            sum += arr[i];
        }
         
        // If current element satisfies the condition
        for (int i = 0; i < N; i++)
        {
            if ((sum - arr[i]) % arr[i] == 0)
            {
                count++;
            }
        }
 
        // Return the count of required elements
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = {3, 10, 4, 6, 7};
        int n = arr.length;
        System.out.println(countNum(n, arr));
    }
}
 
// This code has been contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
 
# Function to return the count
# of the required numbers
def countNum(N, arr):
     
    # Initialize Sum and count to 0
    Sum, count = 0, 0
 
    # Calculate Sum of all the
    # array elements
    for i in range(N):
        Sum += arr[i]
 
    for i in range(N):
 
        # If current element satisfies
        # the condition
        if ((Sum - arr[i]) % arr[i] == 0):
            count += 1
 
    # Return the count of required
    # elements
    return count
 
# Driver code
arr = [ 3, 10, 4, 6, 7 ]
n = len(arr)
print(countNum(n, arr))
 
# This code is contributed
# by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return the count
    // of the required numbers
    static int countNum(int N, int []arr)
    {
        // Initialize sum and count to 0
        int sum = 0, count = 0;
 
        // Calculate sum of all
        // the array elements
        for (int i = 0; i < N; i++)
        {
            sum += arr[i];
        }
         
        // If current element satisfies the condition
        for (int i = 0; i < N; i++)
        {
            if ((sum - arr[i]) % arr[i] == 0)
            {
                count++;
            }
        }
 
        // Return the count of required elements
        return count;
    }
 
    // Driver code
    public static void Main()
    {
        int []arr = {3, 10, 4, 6, 7};
        int n = arr.Length;
        Console.WriteLine(countNum(n, arr));
    }
}
 
/* This code contributed by PrinciRaj1992 */

PHP




<?php
// PHP implementation of the approach
 
// Function to return the count
// of the required numbers
function countNum($N, $arr)
{
    // Initialize sum and count to 0
    $sum = 0; $count = 0;
 
    // Calculate sum of all
    // the array elements
    for ($i = 0; $i < $N; $i++)
        $sum += $arr[$i];
 
    for ($i = 0; $i < $N; $i++)
 
        // If current element satisfies
        // the condition
        if (($sum - $arr[$i]) % $arr[$i] == 0)
            $count++;
 
    // Return the count of required elements
    return $count;
}
 
// Driver code
$arr = array(3, 10, 4, 6, 7);
$n = count($arr);
echo countNum($n, $arr);
 
// This code contributed by Rajput-Ji
?>

Javascript




<script>   
    // Javascript implementation of the approach
     
    // Function to return the count
    // of the required numbers
    function countNum(N, arr)
    {
        // Initialize sum and count to 0
        let sum = 0, count = 0;
  
        // Calculate sum of all
        // the array elements
        for (let i = 0; i < N; i++)
        {
            sum += arr[i];
        }
          
        // If current element satisfies the condition
        for (let i = 0; i < N; i++)
        {
            if ((sum - arr[i]) % arr[i] == 0)
            {
                count++;
            }
        }
  
        // Return the count of required elements
        return count;
    }
     
    let arr = [3, 10, 4, 6, 7];
    let n = arr.length;
    document.write(countNum(n, arr));
     
</script>
Output: 
3

 

Time Complexity: O(N)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :