Given a directed graph of N vertices valued from 0 to N – 1 and array graph[] of size K represents the Adjacency List of the given graph, the task is to count all Hamiltonian Paths in it which start at the 0th vertex and end at the (N – 1)th vertex.
Note: Hamiltonian path is defined as the path which visits every vertex of the graph exactly once.
Examples:
Input: N = 4, K = 6, graph[][] = {{1, 2}, {1, 3}, {2, 3}, {3, 2}, {2, 4}, {3, 4}}
Output: 2
Explanation:
The paths below shown are 1 -> 3 -> 2 -> 4 and 1 -> 2 -> 3 -> 4 starts at 1 and ends at 4 and are called Hamiltonian paths.

Input: N = 2, K = 1, graph[][] = {{1, 2}}
Output: 1
Approach: The given problem can be solved by using Bitmasking with Dynamic Programming, and iterate over all subsets of the given vertices represented by an N size mask and check if there exists a Hamiltonian Path that starts at the 0th vertex and ends at (N – 1)th vertex and count all such paths. Let’s say for a graph having N vertices S represents a bitmask where S = 0 to S = (1 << N) -1 and dp[i][S] represents the number of paths that visits every vertex in the mask S and ends at i then the valid recurrence will be given as dp[i][S] = ∑ dp[j][S XOR 2i] where j ∈ S and there is an edge from j to i where S XOR 2i represents the subset which does not have the ith vertex in it and there must be an edge from j to i. Follow the steps below to solve the given problem:
- Initialize a 2-D array dp[N][2N] with 0 and set dp[0][1] as 1.
- Iterate over the range from [2, 2N – 1] using the variable i and check for the mask having all bits set in it.
- Iterate over the range from [0, N) using the variable end and traverse over all bits of the current mask and assume each bit as the ending bit.
- Initialize the variable prev as i – (1 << end).
- Iterate over the range [0, size) where size is the size of the array graph[end] using the variable it and traverse over the adjacent vertices of the current ending bit and update the dp[][] array like this dp[end][i] += dp[it][prev].
- After performing the above steps, print the value of dp[N-1][2N – 1] as the answer.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void findAllPaths(
int N, vector<vector< int > >& graph)
{
int dp[N][(1 << N)];
memset (dp, 0, sizeof dp);
dp[0][1] = 1;
for ( int i = 2; i < (1 << N); i++) {
if ((i & (1 << 0)) == 0)
continue ;
if ((i & (1 << (N - 1)))
&& i != ((1 << N) - 1))
continue ;
for ( int end = 0; end < N; end++) {
if (i & (1 << end) == 0)
continue ;
int prev = i - (1 << end);
for ( int it : graph[end]) {
if ((i & (1 << it))) {
dp[end][i] += dp[it][prev];
}
}
}
}
cout << dp[N - 1][(1 << N) - 1];
}
int main()
{
int N = 4;
vector<vector< int > > graph(N);
graph[1].push_back(0);
graph[2].push_back(0);
graph[2].push_back(1);
graph[1].push_back(2);
graph[3].push_back(1);
graph[3].push_back(2);
findAllPaths(N, graph);
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG {
static void findAllPaths( int N, List<List<Integer>> graph){
int dp[][] = new int [N][( 1 <<N)];
for ( int i= 0 ;i<N;i++){
for ( int j= 0 ;j<( 1 <<N);j++){
dp[i][j]= 0 ;
}
}
dp[ 0 ][ 1 ] = 1 ;
for ( int i = 2 ; i < ( 1 << N); i++) {
if ((i & ( 1 << 0 )) == 0 ){
continue ;
}
if ((i & ( 1 << (N - 1 )))== 1 && (i != (( 1 << N) - 1 ))){
continue ;
}
for ( int end = 0 ; end < N; end++) {
if ((i & ( 1 << end)) == 0 ){
continue ;
}
int prev = i - ( 1 << end);
for ( int it : graph.get(end)) {
if ((i & ( 1 << it))!= 0 ) {
dp[end][i] += dp[it][prev];
}
}
}
}
System.out.print(dp[N - 1 ][( 1 << N) - 1 ]);
}
public static void main (String[] args) {
int N= 4 ;
List<List<Integer>> graph = new ArrayList<>();
for ( int i= 0 ;i<N;i++){
graph.add( new ArrayList<Integer>());
}
graph.get( 1 ).add( 0 );
graph.get( 2 ).add( 0 );
graph.get( 2 ).add( 1 );
graph.get( 1 ).add( 2 );
graph.get( 3 ).add( 1 );
graph.get( 3 ).add( 2 );
findAllPaths(N, graph);
}
}
|
Python3
def findAllPaths(N, graph):
dp = [[ 0 for _ in range ( 1 << N)] for _ in range (N)]
dp[ 0 ][ 1 ] = 1
for i in range ( 2 , ( 1 << N)):
if ((i & ( 1 << 0 )) = = 0 ):
continue
if ((i & ( 1 << (N - 1 ))) and i ! = (( 1 << N) - 1 )):
continue
for end in range ( 0 , N):
if (i & ( 1 << end) = = 0 ):
continue
prev = i - ( 1 << end)
for it in graph[end]:
if ((i & ( 1 << it))):
dp[end][i] + = dp[it][prev]
print (dp[N - 1 ][( 1 << N) - 1 ])
if __name__ = = "__main__" :
N = 4
graph = [[] for _ in range (N)]
graph[ 1 ].append( 0 )
graph[ 2 ].append( 0 )
graph[ 2 ].append( 1 )
graph[ 1 ].append( 2 )
graph[ 3 ].append( 1 )
graph[ 3 ].append( 2 )
findAllPaths(N, graph)
|
Javascript
<script>
function findAllPaths(N, graph) {
let dp = new Array(N).fill(0).map(() => new Array(1 << N).fill(0));
dp[0][1] = 1;
for (let i = 2; i < 1 << N; i++) {
if ((i & (1 << 0)) == 0) continue ;
if (i & (1 << (N - 1)) && i != (1 << N) - 1) continue ;
for (let end = 0; end < N; end++) {
if (i & (1 << end == 0)) continue ;
let prev = i - (1 << end);
for (let it of graph[end]) {
if (i & (1 << it)) {
dp[end][i] += dp[it][prev];
}
}
}
}
document.write(dp[N - 1][(1 << N) - 1]);
}
let N = 4;
let graph = new Array(N).fill(0).map(() => []);
graph[1].push(0);
graph[2].push(0);
graph[2].push(1);
graph[1].push(2);
graph[3].push(1);
graph[3].push(2);
findAllPaths(N, graph);
</script>
|
C#
using System;
using System.Collections.Generic;
public class GFG
{
static void findAllPaths( int N, List<List< int >> graph)
{
int [][] dp = new int [N][];
for ( int i = 0; i < N; i++)
{
dp[i] = new int [1 << N];
}
for ( int i = 0; i < N; i++)
{
for ( int j = 0; j < (1 << N); j++)
{
dp[i][j] = 0;
}
}
dp[0][1] = 1;
for ( int i = 2; i < (1 << N); i++)
{
if ((i & (1 << 0)) == 0)
{
continue ;
}
if ((i & (1 << (N - 1))) == 1 && (i != ((1 << N) - 1)))
{
continue ;
}
for ( int end = 0; end < N; end++)
{
if ((i & (1 << end)) == 0)
{
continue ;
}
int prev = i - (1 << end);
foreach ( int it in graph[end])
{
if ((i & (1 << it)) != 0)
{
dp[end][i] += dp[it][prev];
}
}
}
}
Console.WriteLine(dp[N - 1][(1 << N) - 1]);
}
public static void Main( string [] args)
{
int N = 4;
List<List< int >> graph = new List<List< int >>();
for ( int i = 0; i < N; i++)
{
graph.Add( new List< int >());
}
graph[1].Add(0);
graph[2].Add(0);
graph[2].Add(1);
graph[1].Add(2);
graph[3].Add(1);
graph[3].Add(2);
findAllPaths(N, graph);
}
}
|
Time Complexity: O(N*2N)
Auxiliary Space: O(1)