Open In App

Count all Hamiltonian paths in a given directed graph

Improve
Improve
Like Article
Like
Save
Share
Report

Given a directed graph of N vertices valued from 0 to N – 1 and array graph[] of size K represents the Adjacency List of the given graph, the task is to count all Hamiltonian Paths in it which start at the 0th vertex and end at the (N – 1)th vertex.

Note: Hamiltonian path is defined as the path which visits every vertex of the graph exactly once.

Examples:

Input: N = 4, K = 6, graph[][] = {{1, 2}, {1, 3}, {2, 3}, {3, 2}, {2, 4}, {3, 4}}
Output: 2
Explanation:
The paths below shown are 1 -> 3 -> 2 -> 4 and 1 -> 2 -> 3 -> 4 starts at 1 and ends at 4 and are called Hamiltonian paths.

Input: N = 2, K = 1, graph[][] = {{1, 2}}
Output: 1

 

Approach: The given problem can be solved by using Bitmasking with Dynamic Programming, and iterate over all subsets of the given vertices represented by an N size mask and check if there exists a Hamiltonian Path that starts at the 0th vertex and ends at (N – 1)th vertex and count all such paths. Let’s say for a graph having N vertices S represents a bitmask where S = 0 to S = (1 << N) -1 and dp[i][S] represents the number of paths that visits every vertex in the mask S and ends at i then the valid recurrence will be given as dp[i][S] = ∑ dp[j][S XOR 2i] where j ∈ S and there is an edge from j to i where S XOR 2 represents the subset which does not have the ith vertex in it and there must be an edge from j to i. Follow the steps below to solve the given problem:

  • Initialize a 2-D array dp[N][2N] with 0 and set dp[0][1] as 1.
  • Iterate over the range from [2, 2N – 1] using the variable i and check for the mask having all bits set in it.
    • Iterate over the range from [0, N) using the variable end and traverse over all bits of the current mask and assume each bit as the ending bit.
      • Initialize the variable prev as i – (1 << end).
      • Iterate over the range [0, size) where size is the size of the array graph[end] using the variable it and traverse over the adjacent vertices of the current ending bit and update the dp[][] array like this dp[end][i] += dp[it][prev].
  • After performing the above steps, print the value of dp[N-1][2N – 1] as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find all possible paths
void findAllPaths(
    int N, vector<vector<int> >& graph)
{
 
    // Initialize a dp array
    int dp[N][(1 << N)];
 
    // Initialize it with 0
    memset(dp, 0, sizeof dp);
 
    // Initialize for the first vertex
    dp[0][1] = 1;
 
    // Iterate over all the masks
    for (int i = 2; i < (1 << N); i++) {
 
        // If the first vertex is absent
        if ((i & (1 << 0)) == 0)
            continue;
 
        // Only consider the full subsets
        if ((i & (1 << (N - 1)))
            && i != ((1 << N) - 1))
            continue;
 
        // Choose the end city
        for (int end = 0; end < N; end++) {
 
            // If this city is not in the subset
            if (i & (1 << end) == 0)
                continue;
 
            // Set without the end city
            int prev = i - (1 << end);
 
            // Check for the adjacent cities
            for (int it : graph[end]) {
                if ((i & (1 << it))) {
                    dp[end][i] += dp[it][prev];
                }
            }
        }
    }
 
    // Print the answer
    cout << dp[N - 1][(1 << N) - 1];
}
 
// Driver Code
int main()
{
    int N = 4;
    vector<vector<int> > graph(N);
    graph[1].push_back(0);
    graph[2].push_back(0);
    graph[2].push_back(1);
    graph[1].push_back(2);
    graph[3].push_back(1);
    graph[3].push_back(2);
 
    findAllPaths(N, graph);
 
    return 0;
}


Java




//Java program to count all Hamiltonian
//paths in a given directed graph
 
import java.io.*;
import java.util.*;
 
class GFG {
     
    // Function to find all possible paths
    static void findAllPaths(int N, List<List<Integer>> graph){
         
        // Initialize a dp array
        int dp[][] = new int[N][(1<<N)];
         
        // Initialize it with 0
        for(int i=0;i<N;i++){
            for(int j=0;j<(1<<N);j++){
                dp[i][j]=0;
            }
        }
         
        // Initialize for the first vertex
        dp[0][1] = 1;
      
        // Iterate over all the masks
        for (int i = 2; i < (1 << N); i++) {
      
            // If the first vertex is absent
            if ((i & (1 << 0)) == 0){
                continue;
            }
      
            // Only consider the full subsets
            if ((i & (1 << (N - 1)))==1 && (i != ((1 << N) - 1))){
                continue;
            }
      
            // Choose the end city
            for (int end = 0; end < N; end++) {
      
                // If this city is not in the subset
                if ((i & (1 << end)) == 0){
                    continue;
                }
      
                // Set without the end city
                int prev = i - (1 << end);
      
                // Check for the adjacent cities
                for (int it : graph.get(end)) {
                    if ((i & (1 << it))!=0) {
                        dp[end][i] += dp[it][prev];
                    }
                }
            }
        }
        System.out.print(dp[N - 1][(1 << N) - 1]);
    }
     
    //Driver Code
    public static void main (String[] args) {
        int N=4;
        List<List<Integer>> graph = new ArrayList<>();
        for(int i=0;i<N;i++){
            graph.add(new ArrayList<Integer>());
        }
        graph.get(1).add(0);
        graph.get(2).add(0);
        graph.get(2).add(1);
        graph.get(1).add(2);
        graph.get(3).add(1);
        graph.get(3).add(2);
         
        findAllPaths(N, graph);
         
    }
}
 
//This code is contributed by shruti456rawal


Python3




# python program for the above approach
 
# Function to find all possible paths
def findAllPaths(N, graph):
 
        # Initialize a dp array
 
        # Initialize it with 0
    dp = [[0 for _ in range(1 << N)] for _ in range(N)]
 
    # Initialize for the first vertex
    dp[0][1] = 1
 
    # Iterate over all the masks
    for i in range(2, (1 << N)):
 
        # If the first vertex is absent
        if ((i & (1 << 0)) == 0):
            continue
 
         # Only consider the full subsets
        if ((i & (1 << (N - 1)))and i != ((1 << N) - 1)):
            continue
 
        # Choose the end city
        for end in range(0, N):
 
             # If this city is not in the subset
            if (i & (1 << end) == 0):
                continue
 
                # Set without the end city
            prev = i - (1 << end)
 
            # Check for the adjacent cities
 
            for it in graph[end]:
                if ((i & (1 << it))):
                    dp[end][i] += dp[it][prev]
 
        # Print the answer
    print(dp[N - 1][(1 << N) - 1])
 
# Driver Code
if __name__ == "__main__":
 
    N = 4
    graph = [[] for _ in range(N)]
    graph[1].append(0)
    graph[2].append(0)
    graph[2].append(1)
    graph[1].append(2)
    graph[3].append(1)
    graph[3].append(2)
 
    findAllPaths(N, graph)
 
    # This code is contributed by rakeshsahni


Javascript




<script>
// Javascript program for the above approach
 
// Function to find all possible paths
function findAllPaths(N, graph) {
  // Initialize a dp array
  let dp = new Array(N).fill(0).map(() => new Array(1 << N).fill(0));
 
  // Initialize for the first vertex
  dp[0][1] = 1;
 
  // Iterate over all the masks
  for (let i = 2; i < 1 << N; i++) {
    // If the first vertex is absent
    if ((i & (1 << 0)) == 0) continue;
 
    // Only consider the full subsets
    if (i & (1 << (N - 1)) && i != (1 << N) - 1) continue;
 
    // Choose the end city
    for (let end = 0; end < N; end++) {
      // If this city is not in the subset
      if (i & (1 << end == 0)) continue;
 
      // Set without the end city
      let prev = i - (1 << end);
 
      // Check for the adjacent cities
      for (let it of graph[end]) {
        if (i & (1 << it)) {
          dp[end][i] += dp[it][prev];
        }
      }
    }
  }
 
  // Print the answer
  document.write(dp[N - 1][(1 << N) - 1]);
}
 
// Driver Code
 
let N = 4;
let graph = new Array(N).fill(0).map(() => []);
graph[1].push(0);
graph[2].push(0);
graph[2].push(1);
graph[1].push(2);
graph[3].push(1);
graph[3].push(2);
 
findAllPaths(N, graph);
 
// This code is contributed by gfgking.
</script>


C#




//C# program to count all Hamiltonian
//paths in a given directed graph
 
using System;
using System.Collections.Generic;
 
public class GFG
{
    // Function to find all possible paths
    static void findAllPaths(int N, List<List<int>> graph)
    {
        // Initialize a dp array
        int[][] dp = new int[N][];
        for (int i = 0; i < N; i++)
        {
            dp[i] = new int[1 << N];
        }
 
        // Initialize it with 0
        for (int i = 0; i < N; i++)
        {
            for (int j = 0; j < (1 << N); j++)
            {
                dp[i][j] = 0;
            }
        }
 
        // Initialize for the first vertex
        dp[0][1] = 1;
 
        // Iterate over all the masks
        for (int i = 2; i < (1 << N); i++)
        {
            // If the first vertex is absent
            if ((i & (1 << 0)) == 0)
            {
                continue;
            }
 
            // Only consider the full subsets
            if ((i & (1 << (N - 1))) == 1 && (i != ((1 << N) - 1)))
            {
                continue;
            }
 
            // Choose the end city
            for (int end = 0; end < N; end++)
            {
                // If this city is not in the subset
                if ((i & (1 << end)) == 0)
                {
                    continue;
                }
 
                // Set without the end city
                int prev = i - (1 << end);
 
                // Check for the adjacent cities
                foreach (int it in graph[end])
                {
                    if ((i & (1 << it)) != 0)
                    {
                        dp[end][i] += dp[it][prev];
                    }
                }
            }
        }
        Console.WriteLine(dp[N - 1][(1 << N) - 1]);
    }
 
    //Driver Code
    public static void Main(string[] args)
    {
        int N = 4;
        List<List<int>> graph = new List<List<int>>();
        for (int i = 0; i < N; i++)
        {
            graph.Add(new List<int>());
        }
        graph[1].Add(0);
        graph[2].Add(0);
        graph[2].Add(1);
        graph[1].Add(2);
        graph[3].Add(1);
        graph[3].Add(2);
 
        findAllPaths(N, graph);
    }
}


Output

2

Time Complexity: O(N*2N)
Auxiliary Space: O(1)



Last Updated : 24 Jan, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads