Given an array arr[] consisting of N integers, the task is to count all disjoint pairs having absolute difference of at least K.
Note: The pair (arr[i], arr[j]) and (arr[j], arr[i]) are considered as the same pair.
Examples:
Input: arr[] = {1, 3, 3, 5}, K = 2
Output: 2
Explanation:
The following two pairs satisfy the necessary conditions:
- {arr[0], arr[1]} = (1, 3) whose absolute difference is |1 – 3| = 2
- {arr[2], arr[3]} = (3, 5) whose absolute difference is |3 – 5| = 2
Input: arr[] = {1, 2, 3, 4}, K = 3
Output: 1
Explanation:
The only pair satisfying the necessary conditions is {arr[0], arr[3]} = (1, 4), since |1 – 4| = 3.
Naive Approach: The simplest approach is to generate all possible pairs of the given array and count those pairs whose absolute difference is at least K and to keep track of elements that have already been taken into pairs, using an auxiliary array visited[] to mark the paired elements.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void countPairsWithDiffK( int arr[],
int N, int K)
{
int vis[N];
memset (vis, 0, sizeof (vis));
int count = 0;
for ( int i = 0; i < N; i++) {
if (vis[i] == 1)
continue ;
for ( int j = i + 1; j < N; j++) {
if (vis[j] == 1)
continue ;
if ( abs (arr[i] - arr[j]) >= K) {
count++;
vis[i] = 1;
vis[j] = 1;
break ;
}
}
}
cout << count << ' ' ;
}
int main()
{
int arr[] = { 1, 3, 3, 5 };
int N = sizeof (arr) / sizeof (arr[0]);
int K = 2;
countPairsWithDiffK(arr, N, K);
return 0;
}
|
Java
import java.util.*;
class GFG{
static void countPairsWithDiffK( int arr[],
int N, int K)
{
int []vis = new int [N];
Arrays.fill(vis, 0 );
int count = 0 ;
for ( int i = 0 ; i < N; i++)
{
if (vis[i] == 1 )
continue ;
for ( int j = i + 1 ; j < N; j++)
{
if (vis[j] == 1 )
continue ;
if (Math.abs(arr[i] - arr[j]) >= K)
{
count++;
vis[i] = 1 ;
vis[j] = 1 ;
break ;
}
}
}
System.out.print(count);
}
public static void main(String args[])
{
int arr[] = { 1 , 3 , 3 , 5 };
int N = arr.length;
int K = 2 ;
countPairsWithDiffK(arr, N, K);
}
}
|
Python3
def countPairsWithDiffK(arr, N, K):
vis = [ 0 ] * N
count = 0
for i in range (N):
if (vis[i] = = 1 ):
continue
for j in range (i + 1 , N):
if (vis[j] = = 1 ):
continue
if ( abs (arr[i] - arr[j]) > = K):
count + = 1
vis[i] = 1
vis[j] = 1
break
print (count)
if __name__ = = '__main__' :
arr = [ 1 , 3 , 3 , 5 ]
N = len (arr)
K = 2
countPairsWithDiffK(arr, N, K)
|
C#
using System;
class GFG{
static void countPairsWithDiffK( int [] arr, int N,
int K)
{
int [] vis = new int [N];
int count = 0;
for ( int i = 0; i < N; i++)
{
if (vis[i] == 1)
continue ;
for ( int j = i + 1; j < N; j++)
{
if (vis[j] == 1)
continue ;
if (Math.Abs(arr[i] - arr[j]) >= K)
{
count++;
vis[i] = 1;
vis[j] = 1;
break ;
}
}
}
Console.Write(count);
}
public static void Main()
{
int [] arr = { 1, 3, 3, 5 };
int N = arr.Length;
int K = 2;
countPairsWithDiffK(arr, N, K);
}
}
|
Javascript
<script>
function countPairsWithDiffK(arr, N, K)
{
var vis = new Array(N);
vis.fill(0);
var count = 0;
for ( var i = 0; i < N; i++) {
if (vis[i] == 1)
continue ;
for ( var j = i + 1; j < N; j++) {
if (vis[j] == 1)
continue ;
if (Math.abs(arr[i] - arr[j]) >= K) {
count++;
vis[i] = 1;
vis[j] = 1;
break ;
}
}
}
document.write( count + " " );
}
var arr = [ 1, 3, 3, 5 ];
var N = arr.length;
var K = 2;
countPairsWithDiffK(arr, N, K);
</script>
|
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach: The efficient idea is to use Binary Search to find the first occurrence having a difference of at least K. Below are the steps:
- Sort the given array in increasing order.
- Initialize cnt to 0 which will store the count of all possible pairs.
- Perform the Binary Search as per the following:
- Initialize left as 0 and right as N/2 + 1.
- Find the value of mid as (left + right) / 2.
- Check if mid number of pairs can be formed by pairing leftmost M elements with rightmost M elements i.e., check if arr[0] – arr[N – M] ? d, arr[1] – arr[N -M + 1] ? d, …, arr[M – 1] – arr[N – 1] ? d.
- In the above steps, traverse the array over the range [0, M] and if there exists an index whose abs(arr[N – M + i] – arr[i]) is less than K then update right as (mid – 1).
- Otherwise, update left as mid + 1 and cnt as mid.
- After the above step, print the value of cnt as all possible count of pairs.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
bool isValid( int arr[], int n, int m,
int d)
{
for ( int i = 0; i < m; i++) {
if ( abs (arr[n - m + i]
- arr[i])
< d) {
return 0;
}
}
return 1;
}
int countPairs( int arr[], int N, int K)
{
int ans = 0;
int left = 0, right = N / 2 + 1;
sort(arr, arr + N);
while (left < right) {
int mid = (left + right) / 2;
if (isValid(arr, N, mid, K)) {
ans = mid;
left = mid + 1;
}
else
right = mid - 1;
}
cout << ans << ' ' ;
}
int main()
{
int arr[] = { 1, 3, 3, 5 };
int K = 2;
int N = sizeof (arr) / sizeof (arr[0]);
countPairs(arr, N, K);
return 0;
}
|
Java
import java.util.*;
class GFG{
static int isValid( int arr[], int n, int m,
int d)
{
for ( int i = 0 ; i < m; i++)
{
if (Math.abs(arr[n - m + i] - arr[i]) < d)
{
return 0 ;
}
}
return 1 ;
}
static void countPairs( int arr[], int N, int K)
{
int ans = 0 ;
int left = 0 , right = N / 2 + 1 ;
Arrays.sort(arr);
while (left < right)
{
int mid = (left + right) / 2 ;
if (isValid(arr, N, mid, K) == 1 )
{
ans = mid;
left = mid + 1 ;
}
else
right = mid - 1 ;
}
System.out.print(ans);
}
public static void main(String args[])
{
int arr[] = { 1 , 3 , 3 , 5 };
int K = 2 ;
int N = arr.length;
countPairs(arr, N, K);
}
}
|
Python3
def isValid(arr, n, m, d):
for i in range (m):
if ( abs (arr[n - m + i] - arr[i]) < d):
return 0
return 1
def countPairs(arr, N, K):
ans = 0
left = 0
right = N / / 2 + 1
arr.sort(reverse = False )
while (left < right):
mid = (left + right) / / 2
if (isValid(arr, N, mid, K)):
ans = mid
left = mid + 1
else :
right = mid - 1
print (ans, end = "")
if __name__ = = '__main__' :
arr = [ 1 , 3 , 3 , 5 ]
K = 2
N = len (arr)
countPairs(arr, N, K)
|
C#
using System;
class GFG{
static int isValid( int []arr, int n,
int m, int d)
{
for ( int i = 0; i < m; i++)
{
if (Math.Abs(arr[n - m + i] -
arr[i]) < d)
{
return 0;
}
}
return 1;
}
static void countPairs( int []arr,
int N, int K)
{
int ans = 0;
int left = 0,
right = N / 2 + 1;
Array.Sort(arr);
while (left < right)
{
int mid = (left +
right) / 2;
if (isValid(arr, N,
mid, K) == 1)
{
ans = mid;
left = mid + 1;
}
else
right = mid - 1;
}
Console.WriteLine(ans);
}
public static void Main()
{
int []arr = {1, 3, 3, 5};
int K = 2;
int N = arr.Length;
countPairs(arr, N, K);
}
}
|
Javascript
<script>
function isValid(arr , n , m , d) {
for (i = 0; i < m; i++) {
if (Math.abs(arr[n - m + i] - arr[i]) < d) {
return 0;
}
}
return 1;
}
function countPairs(arr , N , K) {
var ans = 0;
var left = 0, right = N / 2 + 1;
arr.sort();
while (left < right) {
var mid = parseInt((left + right) / 2);
if (isValid(arr, N, mid, K) == 1) {
ans = mid;
left = mid + 1;
} else
right = mid - 1;
}
document.write(ans);
}
var arr = [ 1, 3, 3, 5 ];
var K = 2;
var N = arr.length;
countPairs(arr, N, K);
</script>
|
Time Complexity: O(N*log N)
Auxiliary Space: O(1)