Cost required to make all array elements equal to 1
Given a binary array arr[] of size N, the task is to find the total cost required to make all array elements equal to 1, where the cost of converting any 0 to 1 is equal to the count of 1s present before that 0.
Examples:
Input: arr[] = {1, 0, 1, 0, 1, 0}
Output: 9
Explanation:
Following operations are performed:
- Converting arr[1] to 1 modifies arr[] to {1, 1, 1, 0, 1, 0}. Cost = 1.
- Converting arr[3] to 1 modifies arr[] to {1, 1, 1, 1, 1, 0}. Cost = 3.
- Converting arr[5] to 1 modifies arr[] to {1, 1, 1, 1, 1, 5}. Cost = 5.
Therefore, the total cost is 1 + 3 + 5 = 9.
Input: arr[] = {1, 1, 1}
Output: 0
Naive Approach: The simplest approach to solve the given problem is to traverse the array arr[] and count the numbers of 1s present before every index containing 0 and print the sum of all the costs obtained.
Implementation:
C++
#include <iostream> using namespace std; int getTotalCost( int arr[], int N) { int countones = 0; int cost=0; for ( int i = 0; i <N; i++) { if (arr[i]==1) { countones++; continue ; } if (arr[i] == 0) { cost += countones; countones++; } } return cost; } int main() { int arr[] = {1,0,1,0,1,0}; int N = sizeof (arr) / sizeof (arr[0]); cout <<getTotalCost(arr,N)<<endl; return 0; } |
9
Time Complexity: O(N), where N is the size of the array.
Auxiliary Space: O(1), as we are not using any extra array.
Efficient Approach: The above approach can be optimized by observing the fact that after converting every 0 to 1, the count of 1s present before every 0 is given by the index at which 0 occurs. Therefore, the task is to traverse the given array and print all the sum of all the indices having 0s in the array arr[].
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate the cost required // to make all array elements equal to 1 int findCost( int A[], int N) { // Stores the total cost int totalCost = 0; // Traverse the array arr[] for ( int i = 0; i < N; i++) { // If current element is 0 if (A[i] == 0) { // Convert 0 to 1 A[i] = 1; // Add the cost totalCost += i; } } // Return the total cost return totalCost; } // Driver Code int main() { int arr[] = { 1, 0, 1, 0, 1, 0 }; int N = sizeof (arr) / sizeof (arr[0]); cout << findCost(arr, N); return 0; } |
Java
// Java program for the above approach class GFG{ // Function to calculate the cost required // to make all array elements equal to 1 static int findCost( int [] A, int N) { // Stores the total cost int totalCost = 0 ; // Traverse the array arr[] for ( int i = 0 ; i < N; i++) { // If current element is 0 if (A[i] == 0 ) { // Convert 0 to 1 A[i] = 1 ; // Add the cost totalCost += i; } } // Return the total cost return totalCost; } // Driver Code public static void main(String[] args) { int [] arr = { 1 , 0 , 1 , 0 , 1 , 0 }; int N = arr.length; System.out.println(findCost(arr, N)); } } // This code is contributed by ukasp |
Python3
# Python3 program for the above approach # Function to calculate the cost required # to make all array elements equal to 1 def findCost(A, N): # Stores the total cost totalCost = 0 # Traverse the array arr[] for i in range (N): # If current element is 0 if (A[i] = = 0 ): # Convert 0 to 1 A[i] = 1 # Add the cost totalCost + = i # Return the total cost return totalCost # Driver Code if __name__ = = '__main__' : arr = [ 1 , 0 , 1 , 0 , 1 , 0 ] N = len (arr) print (findCost(arr, N)) # This code is contributed by Shivam Singh |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to calculate the cost required // to make all array elements equal to 1 static int findCost( int []A, int N) { // Stores the total cost int totalCost = 0; // Traverse the array arr[] for ( int i = 0; i < N; i++) { // If current element is 0 if (A[i] == 0) { // Convert 0 to 1 A[i] = 1; // Add the cost totalCost += i; } } // Return the total cost return totalCost; } // Driver Code public static void Main() { int []arr = { 1, 0, 1, 0, 1, 0 }; int N = arr.Length; Console.Write(findCost(arr, N)); } } // This code is contributed by SURENDRA_GANGWAR |
Javascript
<script> // Javascript program for the above approach // Function to calculate the cost required // to make all array elements equal to 1 function findCost(A, N) { // Stores the total cost var totalCost = 0; var i; // Traverse the array arr[] for (i = 0; i < N; i++) { // If current element is 0 if (A[i] == 0) { // Convert 0 to 1 A[i] = 1; // Add the cost totalCost += i; } } // Return the total cost return totalCost; } // Driver Code var arr = [1, 0, 1, 0, 1, 0] var N = arr.length document.write(findCost(arr, N)); </script> |
9
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...