Coordinates of rectangle with given points lie inside
Given two arrays X[] and Y[] with n-elements, where (Xi, Yi) represent a point on coordinate system, find the smallest rectangle such that all points from given input lie inside that rectangle and sides of rectangle must be parallel to Coordinate axis. Print all four coordinates of an obtained rectangle.
Note: n >= 4 (we have at least 4 points as input).
Examples :
Input : X[] = {1, 3, 0, 4}, y[] = {2, 1, 0, 2} Output : {0, 0}, {0, 2}, {4, 2}, {4, 0} Input : X[] = {3, 6, 1, 9, 13, 0, 4}, Y[] = {4, 2, 6, 5, 2, 3, 1} Output : {0, 1}, {0, 6}, {13, 6}, {13, 1}
For finding the smallest rectangle you may take two of basic approach :
- Consider origin of coordinate plane as the smallest rectangle and then step by step keep expanding it as per the value of coordinates of points if they don’t lie inside the current rectangle. This concept requires a little of complex logic to find the exact smallest rectangle.
- A very simple and efficient logic behind this is to find the smallest, as well as largest x & y coordinates among all given points and then the all possible four combinations of these values, result in the four points of the required rectangle as {Xmin, Ymin}, {Xmin, Ymax}, {Xmax, Ymax}, {Xmax, Ymin}.
C++
// Program to find smallest rectangle // to conquer all points #include <bits/stdc++.h> using namespace std; // function to print coordinate of smallest rectangle void printRect( int X[], int Y[], int n) { // find Xmax and Xmin int Xmax = *max_element(X, X + n); int Xmin = *min_element(X, X + n); // find Ymax and Ymin int Ymax = *max_element(Y, Y + n); int Ymin = *min_element(Y, Y + n); // print all four coordinates cout << "{" << Xmin << ", " << Ymin << "}" << endl; cout << "{" << Xmin << ", " << Ymax << "}" << endl; cout << "{" << Xmax << ", " << Ymax << "}" << endl; cout << "{" << Xmax << ", " << Ymin << "}" << endl; } // driver program int main() { int X[] = { 4, 3, 6, 1, -1, 12 }; int Y[] = { 4, 1, 10, 3, 7, -1 }; int n = sizeof (X) / sizeof (X[0]); printRect(X, Y, n); return 0; } |
Java
// Program to find smallest rectangle // to conquer all points import java.util.Arrays; import java.util.Collections; class GFG { // function to print coordinate of smallest rectangle static void printRect(Integer X[], Integer Y[], int n) { // find Xmax and Xmin int Xmax = Collections.max(Arrays.asList(X)); int Xmin = Collections.min(Arrays.asList(X)); // find Ymax and Ymin int Ymax = Collections.max(Arrays.asList(Y)); int Ymin = Collections.min(Arrays.asList(Y)); // print all four coordinates System.out.println( "{" + Xmin + ", " + Ymin + "}" ); System.out.println( "{" + Xmin + ", " + Ymax + "}" ); System.out.println( "{" + Xmax + ", " + Ymax + "}" ); System.out.println( "{" + Xmax + ", " + Ymin + "}" ); } //Driver code public static void main (String[] args) { Integer X[] = { 4 , 3 , 6 , 1 , - 1 , 12 }; Integer Y[] = { 4 , 1 , 10 , 3 , 7 , - 1 }; int n = X.length; printRect(X, Y, n); } } // This code is contributed by Anant Agarwal. |
Python 3
# Program to find smallest rectangle # to conquer all points # function to print coordinate of smallest rectangle def printRect(X, Y, n): # find Xmax and Xmin Xmax = max (X) Xmin = min (X) # find Ymax and Ymin Ymax = max (Y) Ymin = min (Y) # print all four coordinates print ( "{" ,Xmin, ", " ,Ymin, "}" ,sep = "" ) print ( "{" ,Xmin, ", " ,Ymax, "}" ,sep = "" ) print ( "{" ,Xmax, ", " ,Ymax, "}" ,sep = "" ) print ( "{" ,Xmax, ", " ,Ymin, "}" ,sep = "" ) # driver program X = [ 4 , 3 , 6 , 1 , - 1 , 12 ] Y = [ 4 , 1 , 10 , 3 , 7 , - 1 ] n = len (X) printRect(X, Y, n) # This code is contributed by # Smitha Dinesh Semwal |
C#
// Program to find smallest rectangle // to conquer all points using System.Linq; using System; public class GFG{ // function to print coordinate // of smallest rectangle static void printRect( int [] X, int [] Y, int n) { // find Xmax and Xmin int Xmax = X.Max(); int Xmin = X.Min(); // find Ymax and Ymin int Ymax = Y.Max(); int Ymin = Y.Min(); // print all four coordinates Console.WriteLine( "{" + Xmin + ", " + Ymin + "}" ); Console.WriteLine( "{" + Xmin + ", " + Ymax + "}" ); Console.WriteLine( "{" + Xmax + ", " + Ymax + "}" ); Console.WriteLine( "{" + Xmax + ", " + Ymin + "}" ); } // Driver code static public void Main () { int [] X = { 4, 3, 6, 1, -1, 12 }; int [] Y = { 4, 1, 10, 3, 7, -1 }; int n = X.Length; printRect(X, Y, n); } } // This code is contributed by Ajit. |
PHP
<?php // PHP Program to find smallest // rectangle to conquer all points // function to print coordinate // of smallest rectangle function printRect( $X , $Y , $n ) { // find Xmax and Xmin $Xmax = max( $X ); $Xmin = min( $X ); // find Ymax and Ymin $Ymax = max( $Y ); $Ymin = min( $Y ); // print all four coordinates echo "{" , $Xmin , ", " , $Ymin , "}" , "\n" ; echo "{" , $Xmin , ", " , $Ymax , "}" , "\n" ; echo "{" , $Xmax , ", " , $Ymax , "}" , "\n" ; echo "{" , $Xmax , ", " , $Ymin , "}" ; } // Driver Code $X = array (4, 3, 6, 1, -1, 12); $Y = array (4, 1, 10, 3, 7, -1); $n = count ( $X ); printRect( $X , $Y , $n ); // This code is contributed by anuj_67. ?> |
Javascript
<script> // Program to find smallest rectangle // to conquer all points // function to print coordinate of smallest rectangle function printRect(X, Y, n) { // find Xmax and Xmin var Xmax = X.reduce((a,b) => Math.max(a,b)); var Xmin = X.reduce((a,b) => Math.min(a,b)); // find Ymax and Ymin var Ymax = Y.reduce((a,b) => Math.max(a,b)); var Ymin = Y.reduce((a,b) => Math.min(a,b)); // print all four coordinates document.write( "{" + Xmin + ", " + Ymin + "}" + "<br>" ); document.write( "{" + Xmin + ", " + Ymax + "}" + "<br>" ); document.write( "{" + Xmax + ", " + Ymax + "}" + "<br>" ); document.write( "{" + Xmax + ", " + Ymin + "}" + "<br>" ); } // driver program var X = [ 4, 3, 6, 1, -1, 12 ]; var Y = [ 4, 1, 10, 3, 7, -1 ]; var n = X.length; printRect(X, Y, n); </script> |
Output:
{-1, -1} {-1, 10} {12, 10} {12, -1}
Time complexity: O(len(X)+len(Y))
space complexity: O(1)
Please Login to comment...