Given an array of n integers. Write a program to find minimum number of changes in array so that array is strictly increasing of integers. In strictly increasing array A[i] < A[i+1] for 0 <= i < n
Examples:
Input : arr[] = { 1, 2, 6, 5, 4} Output : 2 We can change a[2] to any value between 2 and 5. and a[4] to any value greater then 5. Input : arr[] = { 1, 2, 3, 5, 7, 11 } Output : 0 Array is already strictly increasing.
The problem is variation of Longest Increasing Subsequence. The numbers which are already a part of LIS need not to be changed. So minimum elements to change is difference of size of array and number of elements in LIS. Note that we also need to make sure that the numbers are integers. So while making LIS, we do not consider those elements as part of LIS that cannot form strictly increasing by inserting elements in middle.
Example { 1, 2, 5, 3, 4 }, we consider length of LIS as three {1, 2, 5}, not as {1, 2, 3, 4} because we cannot make a strictly increasing array of integers with this LIS.
C++
// CPP program to find min elements to // change so array is strictly increasing #include <bits/stdc++.h> using namespace std; // To find min elements to remove from array // to make it strictly increasing int minRemove( int arr[], int n) { int LIS[n], len = 0; // Mark all elements of LIS as 1 for ( int i = 0; i < n; i++) LIS[i] = 1; // Find LIS of array for ( int i = 1; i < n; i++) { for ( int j = 0; j < i; j++) { if (arr[i] > arr[j] && (i-j)<=(arr[i]-arr[j])){ LIS[i] = max(LIS[i], LIS[j] + 1); } } len = max(len, LIS[i]); } // Return min changes for array // to strictly increasing return n - len; } // Driver program to test minRemove() int main() { int arr[] = { 1, 2, 6, 5, 4 }; int n = sizeof (arr) / sizeof (arr[0]); cout << minRemove(arr, n); return 0; } |
Java
// Java program to find min elements to // change so array is strictly increasing public class Main { // To find min elements to remove from array // to make it strictly increasing static int minRemove( int arr[], int n) { int LIS[] = new int [n]; int len = 0 ; // Mark all elements of LIS as 1 for ( int i = 0 ; i < n; i++) LIS[i] = 1 ; // Find LIS of array for ( int i = 1 ; i < n; i++) { for ( int j = 0 ; j < i; j++) { if (arr[i] > arr[j] && (i-j)<=(arr[i]-arr[j])) LIS[i] = Math.max(LIS[i], LIS[j] + 1 ); } len = Math.max(len, LIS[i]); } // Return min changes for array // to strictly increasing return n - len; } // Driver program to test minRemove() public static void main(String[] args) { int arr[] = { 1 , 2 , 6 , 5 , 4 }; int n = arr.length; System.out.println(minRemove(arr, n)); } } |
Python3
# Python3 program to find min elements to # change so array is strictly increasing # Find min elements to remove from array # to make it strictly increasing def minRemove(arr, n): LIS = [ 0 for i in range (n)] len = 0 # Mark all elements of LIS as 1 for i in range (n): LIS[i] = 1 # Find LIS of array for i in range ( 1 , n): for j in range (i): if (arr[i] > arr[j] and (i - j)< = (arr[i] - arr[j]) ): LIS[i] = max (LIS[i], LIS[j] + 1 ) len = max ( len , LIS[i]) # Return min changes for array # to strictly increasing return (n - len ) # Driver Code arr = [ 1 , 2 , 6 , 5 , 4 ] n = len (arr) print (minRemove(arr, n)) # This code is contributed by Azkia Anam. |
C#
// C# program to find min elements to change so // array is strictly increasing using System; class GFG { // To find min elements to remove from array to // make it strictly increasing static int minRemove( int []arr, int n) { int []LIS = new int [n]; int len = 0; // Mark all elements // of LIS as 1 for ( int i = 0; i < n; i++) LIS[i] = 1; // Find LIS of array for ( int i = 1; i < n; i++) { for ( int j = 0; j < i; j++) { if (arr[i] > arr[j] && (i-j)<=(arr[i]-arr[j])) LIS[i] = Math.Max(LIS[i], LIS[j] + 1); } len = Math.Max(len, LIS[i]); } // Return min changes for array // to strictly increasing return n - len; } // Driver Code public static void Main() { int []arr = {1, 2, 6, 5, 4}; int n = arr.Length; Console.WriteLine(minRemove(arr, n)); } } // This code is contributed // by anuj_67. |
PHP
<?php // PHP program to find min elements to change so // array is strictly increasing // To find min elements to remove from array // to make it strictly increasing function minRemove( $arr , $n ) { $LIS = array (); $len = 0; // Mark all elements // of LIS as 1 for ( $i = 0; $i < $n ; $i ++) $LIS [ $i ] = 1; // Find LIS of array for ( $i = 1; $i < $n ; $i ++) { for ( $j = 0; $j < $i ; $j ++) { if ( $arr [ $i ] > $arr [ $j ]) $LIS [ $i ] = max( $LIS [ $i ], $LIS [ $j ] + 1); } $len = max( $len , $LIS [ $i ]); } // Return min changes for array to strictly // increasing return $n - $len ; } // Driver Code $arr = array (1, 2, 6, 5, 4); $n = count ( $arr ); echo minRemove( $arr , $n ); // This code is contributed // by anuj_6 ?> |
Output:
2
This article is contributed by nuclode. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.