Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Convert Python Nested Lists to Multidimensional NumPy Arrays

  • Last Updated : 09 Jul, 2021

Prerequisite: Python List, Numpy ndarray

Both lists and NumPy arrays are inter-convertible. Since NumPy is a fast (High-performance) Python library for performing mathematical operations so it is preferred to work on NumPy arrays rather than nested lists.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Method 1: Using numpy.array().



Approach :

  • Import numpy package.
  • Initialize the nested list and then use numpy.array() function to convert the list to an array and store it in a different object.
  • Display both list and NumPy array and observe the difference.

Below is the implementation.

Python3




# importing numpy library
import numpy
 
# initializing list
ls = [[1, 7, 0],
       [ 6, 2, 5]]
 
# converting list to array
ar = numpy.array(ls)
 
# displaying list
print ( ls)
 
# displaying array
print ( ar)

Output :

[[1, 7, 0], [6, 2, 5]]
[[1 7 0]
 [6 2 5]]

Method 2: Using numpy.asarray().

Approach :

  • Import numpy package.
  • Initialize the nested 4-dimensional list and then use numpy.asarray() function to convert the list to the array and store it in a different object.
  • Display both list and NumPy array and observe the difference.

Below is the implementation.

Python3




# importing numpy library
import numpy
 
# initializing list
ls = [[1, 7, 0],[ 6, 2, 5],[ 7, 8, 9],[ 41, 10, 20]]
 
# converting list to array
ar = numpy.asarray(ls)
 
# displaying list
print ( ls)
 
# displaying array
print ( ar)

Output :

[[1, 7, 0], [6, 2, 5], [7, 8, 9], [41, 10, 20]]
[[ 1  7  0]
 [ 6  2  5]
 [ 7  8  9]
 [41 10 20]]



My Personal Notes arrow_drop_up
Recommended Articles
Page :