Skip to content
Related Articles

Related Articles

Improve Article
Convert N to M with given operations using dynamic programming
  • Difficulty Level : Hard
  • Last Updated : 09 Jun, 2021

Given two integers N and M and the task is to convert N to M with the following operations: 
 

  1. Multiply N by 2 i.e. N = N * 2.
  2. Subtract 1 from N i.e. N = N – 1.

Examples: 
 

Input: N = 4, M = 6 
Output:
Perform operation 2: N = N – 1 = 4 – 1 = 3 
Perform operation 1: N = N * 2 = 3 * 2 = 6
Input: N = 10, M = 1 
Output:
 

 

Approach: Create an array dp[] of size MAX = 105 + 5 to store the answer in order to prevent same computation again and again and initialize all the array elements with -1. 
 



  • If N ≤ 0 or N ≥ MAX means it can not be converted to M so return MAX.
  • If N = M then return 0 as N got converted to M.
  • Else find the value at dp[N] if it is not -1, it means it has been calculated earlier so return dp[N].
  • If it is -1 then will call the recursive function as 2 * N and N – 1 and return the the minimum because if N is odd then it can be reached only by performing N – 1 operations and if N is even then 2 * N opearations have to be performed so check both the possibililties and return the minimum.

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int N = 1e5 + 5;
 
int n, m;
int dp[N];
 
// Function to reutrn the minimum
// number of given operations
// required to convert n to m
int minOperations(int k)
{
    // If k is either 0 or out of range
    // then return max
    if (k <= 0 || k >= 2e4) {
        return 1e9;
    }
 
    // If k = m then conversion is
    // complete so return 0
    if (k == m) {
        return 0;
    }
 
    int& ans = dp[k];
 
    // If it has been calculated earlier
    if (ans != -1) {
        return ans;
    }
    ans = 1e9;
 
    // Call for 2*k and k-1 and return
    // the minimum of them. If k is even
    // then it can be reached by 2*k opertaions
    // and If k is odd then it can be reached
    // by k-1 opertaions so try both cases
    // and return the minimum of them
    ans = 1 + min(minOperations(2 * k),
                  minOperations(k - 1));
    return ans;
}
 
// Driver code
int main()
{
    n = 4, m = 6;
    memset(dp, -1, sizeof(dp));
 
    cout << minOperations(n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
    static final int N = 10000;
    static int n, m;
    static int[] dp = new int[N];
 
    // Function to reutrn the minimum
    // number of given operations
    // required to convert n to m
    static int minOperations(int k)
    {
 
        // If k is either 0 or out of range
        // then return max
        if (k <= 0 || k >= 10000)
            return 1000000000;
 
        // If k = m then conversion is
        // complete so return 0
        if (k == m)
            return 0;
 
        dp[k] = dp[k];
 
        // If it has been calculated earlier
        if (dp[k] != -1)
            return dp[k];
        dp[k] = 1000000000;
 
        // Call for 2*k and k-1 and return
        // the minimum of them. If k is even
        // then it can be reached by 2*k opertaions
        // and If k is odd then it can be reached
        // by k-1 opertaions so try both cases
        // and return the minimum of them
        dp[k] = 1 + Math.min(minOperations(2 * k),
                             minOperations(k - 1));
        return dp[k];
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        n = 4;
        m = 6;
        Arrays.fill(dp, -1);
        System.out.println(minOperations(n));
    }
}
 
// This code is contributed by
// sanjeev2552

Python3




# Python3 implementation of the approach
N = 1000
dp = [-1] * N
 
# Function to reutrn the minimum
# number of given operations
# required to convert n to m
def minOperations(k):
 
    # If k is either 0 or out of range
    # then return max
    if (k <= 0 or k >= 1000):
        return 1e9
     
    # If k = m then conversion is
    # complete so return 0
    if (k == m):
        return 0
     
    dp[k] = dp[k]
     
    # If it has been calculated earlier
    if (dp[k] != -1):
        return dp[k]
     
    dp[k] = 1e9
     
    # Call for 2*k and k-1 and return
    # the minimum of them. If k is even
    # then it can be reached by 2*k opertaions
    # and If k is odd then it can be reached
    # by k-1 opertaions so try both cases
    # and return the minimum of them
    dp[k] = 1 + min(minOperations(2 * k),
                    minOperations(k - 1))
    return dp[k]
 
# Driver code
if __name__ == '__main__':
    n = 4
    m = 6
    print(minOperations(n))
     
# This code is contributed by ashutosh450

C#




// C# implementation of the approach
using System;
using System.Linq;
 
class GFG
{
    static int N = 10000;
    static int n, m;
    static int[] dp = Enumerable.Repeat(-1, N).ToArray();
 
    // Function to reutrn the minimum
    // number of given operations
    // required to convert n to m
    static int minOperations(int k)
    {
 
        // If k is either 0 or out of range
        // then return max
        if (k <= 0 || k >= 10000)
            return 1000000000;
 
        // If k = m then conversion is
        // complete so return 0
        if (k == m)
            return 0;
 
        dp[k] = dp[k];
 
        // If it has been calculated earlier
        if (dp[k] != -1)
            return dp[k];
        dp[k] = 1000000000;
 
        // Call for 2*k and k-1 and return
        // the minimum of them. If k is even
        // then it can be reached by 2*k opertaions
        // and If k is odd then it can be reached
        // by k-1 opertaions so try both cases
        // and return the minimum of them
        dp[k] = 1 + Math.Min(minOperations(2 * k),
                             minOperations(k - 1));
        return dp[k];
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        n = 4;
        m = 6;
         
        //Arrays.fill(dp, -1);
        Console.Write(minOperations(n));
    }
}
 
// This code is contributed by
// Mohit kumar 29

Javascript




<script>
 
    let N = 10000;
    let n, m;
    let dp = new Array(N);
 
    function minOperations(k)
    {
     
        // If k is either 0 or out of range
        // then return max
        if (k <= 0 || k >= 10000)
            return 1000000000;
   
        // If k = m then conversion is
        // complete so return 0
        if (k == m)
            return 0;
   
        dp[k] = dp[k];
   
        // If it has been calculated earlier
        if (dp[k] != -1)
            return dp[k];
        dp[k] = 1000000000;
   
        // Call for 2*k and k-1 and return
        // the minimum of them. If k is even
        // then it can be reached by 2*k opertaions
        // and If k is odd then it can be reached
        // by k-1 opertaions so try both cases
        // and return the minimum of them
        dp[k] = 1 + Math.min(minOperations(2 * k),
                             minOperations(k - 1));
        return dp[k];
    }
     
    // Driver Code
    n = 4;
    m = 6;
    for(let i = 0; i < dp.length; i++)
    {
        dp[i] = -1;
    }
    document.write(minOperations(n));
 
// This code is contributed by unknown2108
</script>
Output: 
2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :