# Convert N to M with given operations using dynamic programming

Given two integers N and M and the task is to convert N to M with the following operations:

1. Multiply N by 2 i.e. N = N * 2.
2. Subtract 1 from N i.e. N = N – 1.

Examples:

Input: N = 4, M = 6
Output: 2
Perform operation 2: N = N – 1 = 4 – 1 = 3
Perform operation 1: N = N * 2 = 3 * 2 = 6

Input: N = 10, M = 1
Output: 9

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Create an array dp[] of size MAX = 105 + 5 to store the answer in order to prevent same computation again and again and initialize all the array elements with -1.

• If N ≤ 0 or N ≥ MAX means it can not be converted to M so return MAX.
• If N = M then return 0 as N got converted to M.
• Else find the value at dp[N] if it is not -1, it means it has been calculated earlier so return dp[N].
• If it is -1 then will call the recursive function as 2 * N and N – 1 and return the the minimum because if N is odd then it can be reached only by performing N – 1 operations and if N is even then 2 * N opearations have to be performed so check both the possibililties and return the minimum.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `const` `int` `N = 1e5 + 5; ` ` `  `int` `n, m; ` `int` `dp[N]; ` ` `  `// Function to reutrn the minimum ` `// number of given operations ` `// required to convert n to m ` `int` `minOperations(``int` `k) ` `{ ` `    ``// If k is either 0 or out of range ` `    ``// then return max ` `    ``if` `(k <= 0 || k >= 2e4) { ` `        ``return` `1e9; ` `    ``} ` ` `  `    ``// If k = m then conversion is ` `    ``// complete so return 0 ` `    ``if` `(k == m) { ` `        ``return` `0; ` `    ``} ` ` `  `    ``int``& ans = dp[k]; ` ` `  `    ``// If it has been calculated earlier ` `    ``if` `(ans != -1) { ` `        ``return` `ans; ` `    ``} ` `    ``ans = 1e9; ` ` `  `    ``// Call for 2*k and k-1 and return ` `    ``// the minimum of them. If k is even ` `    ``// then it can be reached by 2*k opertaions ` `    ``// and If k is odd then it can be reached ` `    ``// by k-1 opertaions so try both cases ` `    ``// and return the minimum of them ` `    ``ans = 1 + min(minOperations(2 * k), ` `                  ``minOperations(k - 1)); ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``n = 4, m = 6; ` `    ``memset``(dp, -1, ``sizeof``(dp)); ` ` `  `    ``cout << minOperations(n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach  ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` `    ``static` `final` `int` `N = ``10000``; ` `    ``static` `int` `n, m; ` `    ``static` `int``[] dp = ``new` `int``[N]; ` ` `  `    ``// Function to reutrn the minimum ` `    ``// number of given operations ` `    ``// required to convert n to m ` `    ``static` `int` `minOperations(``int` `k)  ` `    ``{ ` ` `  `        ``// If k is either 0 or out of range ` `        ``// then return max ` `        ``if` `(k <= ``0` `|| k >= ``10000``) ` `            ``return` `1000000000``; ` ` `  `        ``// If k = m then conversion is ` `        ``// complete so return 0 ` `        ``if` `(k == m) ` `            ``return` `0``; ` ` `  `        ``dp[k] = dp[k]; ` ` `  `        ``// If it has been calculated earlier ` `        ``if` `(dp[k] != -``1``) ` `            ``return` `dp[k]; ` `        ``dp[k] = ``1000000000``; ` ` `  `        ``// Call for 2*k and k-1 and return ` `        ``// the minimum of them. If k is even ` `        ``// then it can be reached by 2*k opertaions ` `        ``// and If k is odd then it can be reached ` `        ``// by k-1 opertaions so try both cases ` `        ``// and return the minimum of them ` `        ``dp[k] = ``1` `+ Math.min(minOperations(``2` `* k),  ` `                             ``minOperations(k - ``1``)); ` `        ``return` `dp[k]; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``n = ``4``; ` `        ``m = ``6``; ` `        ``Arrays.fill(dp, -``1``); ` `        ``System.out.println(minOperations(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by ` `// sanjeev2552 `

## Python3

 `# Python3 implementation of the approach ` `N ``=` `1000` `dp ``=` `[``-``1``] ``*` `N ` ` `  `# Function to reutrn the minimum ` `# number of given operations ` `# required to convert n to m ` `def` `minOperations(k): ` ` `  `    ``# If k is either 0 or out of range ` `    ``# then return max ` `    ``if` `(k <``=` `0` `or` `k >``=` `1000``):  ` `        ``return` `1e9` `     `  `    ``# If k = m then conversion is ` `    ``# complete so return 0 ` `    ``if` `(k ``=``=` `m):  ` `        ``return` `0` `     `  `    ``dp[k] ``=` `dp[k] ` `     `  `    ``# If it has been calculated earlier ` `    ``if` `(dp[k] !``=` `-``1``):  ` `        ``return` `dp[k] ` `     `  `    ``dp[k] ``=` `1e9` `     `  `    ``# Call for 2*k and k-1 and return ` `    ``# the minimum of them. If k is even ` `    ``# then it can be reached by 2*k opertaions ` `    ``# and If k is odd then it can be reached ` `    ``# by k-1 opertaions so try both cases ` `    ``# and return the minimum of them ` `    ``dp[k] ``=` `1` `+` `min``(minOperations(``2` `*` `k), ` `                    ``minOperations(k ``-` `1``)) ` `    ``return` `dp[k] ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``n ``=` `4` `    ``m ``=` `6` `    ``print``(minOperations(n))  ` `     `  `# This code is contributed by ashutosh450 `

## C#

 `// C# implementation of the approach  ` `using` `System; ` `using` `System.Linq; ` ` `  `class` `GFG ` `{ ` `    ``static` `int` `N = 10000; ` `    ``static` `int` `n, m; ` `    ``static` `int``[] dp = Enumerable.Repeat(-1, N).ToArray(); ` ` `  `    ``// Function to reutrn the minimum ` `    ``// number of given operations ` `    ``// required to convert n to m ` `    ``static` `int` `minOperations(``int` `k)  ` `    ``{ ` ` `  `        ``// If k is either 0 or out of range ` `        ``// then return max ` `        ``if` `(k <= 0 || k >= 10000) ` `            ``return` `1000000000; ` ` `  `        ``// If k = m then conversion is ` `        ``// complete so return 0 ` `        ``if` `(k == m) ` `            ``return` `0; ` ` `  `        ``dp[k] = dp[k]; ` ` `  `        ``// If it has been calculated earlier ` `        ``if` `(dp[k] != -1) ` `            ``return` `dp[k]; ` `        ``dp[k] = 1000000000; ` ` `  `        ``// Call for 2*k and k-1 and return ` `        ``// the minimum of them. If k is even ` `        ``// then it can be reached by 2*k opertaions ` `        ``// and If k is odd then it can be reached ` `        ``// by k-1 opertaions so try both cases ` `        ``// and return the minimum of them ` `        ``dp[k] = 1 + Math.Min(minOperations(2 * k),  ` `                             ``minOperations(k - 1)); ` `        ``return` `dp[k]; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `Main(String[] args) ` `    ``{ ` `        ``n = 4; ` `        ``m = 6; ` `         `  `        ``//Arrays.fill(dp, -1); ` `        ``Console.Write(minOperations(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by ` `// Mohit kumar 29 `

Output:

```2
```

My Personal Notes arrow_drop_up Competitive Programmer, Full Stack Developer, Technical Content Writer, Machine Learner

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.