# Convert N to M with given operations using dynamic programming

• Difficulty Level : Hard
• Last Updated : 21 Aug, 2021

Given two integers N and M and the task is to convert N to M with the following operations:

1. Multiply N by 2 i.e. N = N * 2.
2. Subtract 1 from N i.e. N = N – 1.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 4, M = 6
Output:
Perform operation 2: N = N – 1 = 4 – 1 = 3
Perform operation 1: N = N * 2 = 3 * 2 = 6

Input: N = 10, M = 1
Output:

Approach: Create an array dp[] of size MAX = 105 + 5 to store the answer in order to prevent the same computation again and again and initialize all the array elements with -1.

• If N â‰¤ 0 or N â‰Ą MAX means it can not be converted to M so return MAX.
• If N = M then return 0 as N got converted to M.
• Else find the value at dp[N] if it is not -1, it means it has been calculated earlier so return dp[N].
• If it is -1 then will call the recursive function as 2 * N and N – 1 and return the minimum because if N is odd then it can be reached only by performing N – 1 operation and if N is even then 2 * N operations have to be performed so check both the possibilities and return the minimum.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `const` `int` `N = 1e5 + 5;` `int` `n, m;``int` `dp[N];` `// Function to return the minimum``// number of given operations``// required to convert n to m``int` `minOperations(``int` `k)``{``    ``// If k is either 0 or out of range``    ``// then return max``    ``if` `(k <= 0 || k >= 2e4) {``        ``return` `1e9;``    ``}` `    ``// If k = m then conversion is``    ``// complete so return 0``    ``if` `(k == m) {``        ``return` `0;``    ``}` `    ``int``& ans = dp[k];` `    ``// If it has been calculated earlier``    ``if` `(ans != -1) {``        ``return` `ans;``    ``}``    ``ans = 1e9;` `    ``// Call for 2*k and k-1 and return``    ``// the minimum of them. If k is even``    ``// then it can be reached by 2*k operations``    ``// and If k is odd then it can be reached``    ``// by k-1 operations so try both cases``    ``// and return the minimum of them``    ``ans = 1 + min(minOperations(2 * k),``                  ``minOperations(k - 1));``    ``return` `ans;``}` `// Driver code``int` `main()``{``    ``n = 4, m = 6;``    ``memset``(dp, -1, ``sizeof``(dp));` `    ``cout << minOperations(n);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `GFG``{``    ``static` `final` `int` `N = ``10000``;``    ``static` `int` `n, m;``    ``static` `int``[] dp = ``new` `int``[N];` `    ``// Function to return the minimum``    ``// number of given operations``    ``// required to convert n to m``    ``static` `int` `minOperations(``int` `k)``    ``{` `        ``// If k is either 0 or out of range``        ``// then return max``        ``if` `(k <= ``0` `|| k >= ``10000``)``            ``return` `1000000000``;` `        ``// If k = m then conversion is``        ``// complete so return 0``        ``if` `(k == m)``            ``return` `0``;` `        ``dp[k] = dp[k];` `        ``// If it has been calculated earlier``        ``if` `(dp[k] != -``1``)``            ``return` `dp[k];``        ``dp[k] = ``1000000000``;` `        ``// Call for 2*k and k-1 and return``        ``// the minimum of them. If k is even``        ``// then it can be reached by 2*k operations``        ``// and If k is odd then it can be reached``        ``// by k-1 operations so try both cases``        ``// and return the minimum of them``        ``dp[k] = ``1` `+ Math.min(minOperations(``2` `* k),``                             ``minOperations(k - ``1``));``        ``return` `dp[k];``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``n = ``4``;``        ``m = ``6``;``        ``Arrays.fill(dp, -``1``);``        ``System.out.println(minOperations(n));``    ``}``}` `// This code is contributed by``// sanjeev2552`

## Python3

 `# Python3 implementation of the approach``N ``=` `1000``dp ``=` `[``-``1``] ``*` `N` `# Function to return the minimum``# number of given operations``# required to convert n to m``def` `minOperations(k):` `    ``# If k is either 0 or out of range``    ``# then return max``    ``if` `(k <``=` `0` `or` `k >``=` `1000``):``        ``return` `1e9``    ` `    ``# If k = m then conversion is``    ``# complete so return 0``    ``if` `(k ``=``=` `m):``        ``return` `0``    ` `    ``dp[k] ``=` `dp[k]``    ` `    ``# If it has been calculated earlier``    ``if` `(dp[k] !``=` `-``1``):``        ``return` `dp[k]``    ` `    ``dp[k] ``=` `1e9``    ` `    ``# Call for 2*k and k-1 and return``    ``# the minimum of them. If k is even``    ``# then it can be reached by 2*k operations``    ``# and If k is odd then it can be reached``    ``# by k-1 operations so try both cases``    ``# and return the minimum of them``    ``dp[k] ``=` `1` `+` `min``(minOperations(``2` `*` `k),``                    ``minOperations(k ``-` `1``))``    ``return` `dp[k]` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``n ``=` `4``    ``m ``=` `6``    ``print``(minOperations(n))``    ` `# This code is contributed by ashutosh450`

## C#

 `// C# implementation of the approach``using` `System;``using` `System.Linq;` `class` `GFG``{``    ``static` `int` `N = 10000;``    ``static` `int` `n, m;``    ``static` `int``[] dp = Enumerable.Repeat(-1, N).ToArray();` `    ``// Function to return the minimum``    ``// number of given operations``    ``// required to convert n to m``    ``static` `int` `minOperations(``int` `k)``    ``{` `        ``// If k is either 0 or out of range``        ``// then return max``        ``if` `(k <= 0 || k >= 10000)``            ``return` `1000000000;` `        ``// If k = m then conversion is``        ``// complete so return 0``        ``if` `(k == m)``            ``return` `0;` `        ``dp[k] = dp[k];` `        ``// If it has been calculated earlier``        ``if` `(dp[k] != -1)``            ``return` `dp[k];``        ``dp[k] = 1000000000;` `        ``// Call for 2*k and k-1 and return``        ``// the minimum of them. If k is even``        ``// then it can be reached by 2*k operations``        ``// and If k is odd then it can be reached``        ``// by k-1 operations so try both cases``        ``// and return the minimum of them``        ``dp[k] = 1 + Math.Min(minOperations(2 * k),``                             ``minOperations(k - 1));``        ``return` `dp[k];``    ``}` `    ``// Driver Code``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``n = 4;``        ``m = 6;``        ` `        ``//Arrays.fill(dp, -1);``        ``Console.Write(minOperations(n));``    ``}``}` `// This code is contributed by``// Mohit kumar 29`

## Javascript

 ``
Output:
`2`

My Personal Notes arrow_drop_up