Convert Min Heap to Max Heap
Given an array representation of min Heap, convert it to max Heap.
Examples:
Input: arr[] = {3, 5, 9, 6, 8, 20, 10, 12, 18, 9}
3
/ \
5 9
/ \ / \
6 8 20 10
/ \ /
12 18 9Output: arr[] = {20, 18, 10, 12, 9, 9, 3, 5, 6, 8}
20
/ \
18 10
/ \ / \
12 9 9 3
/ \ /
5 6 8Input: arr[] = {3, 4, 8, 11, 13}
Output: arr[] = {13, 11, 8, 4, 3}
Approach: To solve the problem follow the below idea:
The idea is, simply build Max Heap without caring about the input. Start from the bottom-most and rightmost internal node of Min-Heap and heapify all internal nodes in the bottom-up way to build the Max heap.
Follow the given steps to solve the problem:
- Call the Heapify function from the rightmost internal node of Min-Heap
- Heapify all internal nodes in the bottom-up way to build max heap
- Print the Max-Heap
Algorithm: Here’s an algorithm for converting a min heap to a max heap:
- Start at the last non-leaf node of the heap (i.e., the parent of the last leaf node). For a binary heap, this node is located at the index floor((n – 1)/2), where n is the number of nodes in the heap.
- For each non-leaf node, perform a “heapify” operation to fix the heap property. In a min heap, this operation involves checking whether the value of the node is greater than that of its children, and if so, swapping the node with the smaller of its children. In a max heap, the operation involves checking whether the value of the node is less than that of its children, and if so, swapping the node with the larger of its children.
- Repeat step 2 for each of the non-leaf nodes, working your way up the heap. When you reach the root of the heap, the entire heap should now be a max heap.
Below is the implementation of the above approach:
C
// C program to convert min Heap to max Heap #include <stdio.h> void swap(int* a, int* b) { int temp = *a; *a = *b; *b = temp; } // to heapify a subtree with root at given index void MaxHeapify(int arr[], int i, int N) { int l = 2 * i + 1; int r = 2 * i + 2; int largest = i; if (l < N && arr[l] > arr[i]) largest = l; if (r < N && arr[r] > arr[largest]) largest = r; if (largest != i) { swap(&arr[i], &arr[largest]); MaxHeapify(arr, largest, N); } } // This function basically builds max heap void convertMaxHeap(int arr[], int N) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for (int i = (N - 2) / 2; i >= 0; --i) MaxHeapify(arr, i, N); } // A utility function to print a given array // of given size void printArray(int* arr, int size) { for (int i = 0; i < size; ++i) printf("%d ", arr[i]); } // Driver's code int main() { // array representing Min Heap int arr[] = { 3, 5, 9, 6, 8, 20, 10, 12, 18, 9 }; int N = sizeof(arr) / sizeof(arr[0]); printf("Min Heap array : "); printArray(arr, N); // Function call convertMaxHeap(arr, N); printf("\nMax Heap array : "); printArray(arr, N); return 0; }
C++
// A C++ program to convert min Heap to max Heap #include <bits/stdc++.h> using namespace std; // to heapify a subtree with root at given index void MaxHeapify(int arr[], int i, int N) { int l = 2 * i + 1; int r = 2 * i + 2; int largest = i; if (l < N && arr[l] > arr[i]) largest = l; if (r < N && arr[r] > arr[largest]) largest = r; if (largest != i) { swap(arr[i], arr[largest]); MaxHeapify(arr, largest, N); } } // This function basically builds max heap void convertMaxHeap(int arr[], int N) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for (int i = (N - 2) / 2; i >= 0; --i) MaxHeapify(arr, i, N); } // A utility function to print a given array // of given size void printArray(int* arr, int size) { for (int i = 0; i < size; ++i) cout << arr[i] << " "; } // Driver's code int main() { // array representing Min Heap int arr[] = { 3, 5, 9, 6, 8, 20, 10, 12, 18, 9 }; int N = sizeof(arr) / sizeof(arr[0]); printf("Min Heap array : "); printArray(arr, N); // Function call convertMaxHeap(arr, N); printf("\nMax Heap array : "); printArray(arr, N); return 0; }
Java
// Java program to convert min Heap to max Heap class GFG { // To heapify a subtree with root at given index static void MaxHeapify(int arr[], int i, int N) { int l = 2 * i + 1; int r = 2 * i + 2; int largest = i; if (l < N && arr[l] > arr[i]) largest = l; if (r < N && arr[r] > arr[largest]) largest = r; if (largest != i) { // swap arr[i] and arr[largest] int temp = arr[i]; arr[i] = arr[largest]; arr[largest] = temp; MaxHeapify(arr, largest, N); } } // This function basically builds max heap static void convertMaxHeap(int arr[], int N) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for (int i = (N - 2) / 2; i >= 0; --i) MaxHeapify(arr, i, N); } // A utility function to print a given array // of given size static void printArray(int arr[], int size) { for (int i = 0; i < size; ++i) System.out.print(arr[i] + " "); } // driver's code public static void main(String[] args) { // array representing Min Heap int arr[] = { 3, 5, 9, 6, 8, 20, 10, 12, 18, 9 }; int N = arr.length; System.out.print("Min Heap array : "); printArray(arr, N); // Function call convertMaxHeap(arr, N); System.out.print("\nMax Heap array : "); printArray(arr, N); } } // Contributed by Pramod Kumar
Python3
# A Python3 program to convert min Heap # to max Heap # to heapify a subtree with root # at given index def MaxHeapify(arr, i, N): l = 2 * i + 1 r = 2 * i + 2 largest = i if l < N and arr[l] > arr[i]: largest = l if r < N and arr[r] > arr[largest]: largest = r if largest != i: arr[i], arr[largest] = arr[largest], arr[i] MaxHeapify(arr, largest, N) # This function basically builds max heap def convertMaxHeap(arr, N): # Start from bottommost and rightmost # internal node and heapify all # internal nodes in bottom up way for i in range(int((N - 2) / 2), -1, -1): MaxHeapify(arr, i, N) # A utility function to print a # given array of given size def printArray(arr, size): for i in range(size): print(arr[i], end=" ") print() # Driver Code if __name__ == '__main__': # array representing Min Heap arr = [3, 5, 9, 6, 8, 20, 10, 12, 18, 9] N = len(arr) print("Min Heap array : ") printArray(arr, N) # Function call convertMaxHeap(arr, N) print("Max Heap array : ") printArray(arr, N) # This code is contributed by PranchalK
C#
// C# program to convert // min Heap to max Heap using System; class GFG { // To heapify a subtree with // root at given index static void MaxHeapify(int[] arr, int i, int n) { int l = 2 * i + 1; int r = 2 * i + 2; int largest = i; if (l < n && arr[l] > arr[i]) largest = l; if (r < n && arr[r] > arr[largest]) largest = r; if (largest != i) { // swap arr[i] and arr[largest] int temp = arr[i]; arr[i] = arr[largest]; arr[largest] = temp; MaxHeapify(arr, largest, n); } } // This function basically // builds max heap static void convertMaxHeap(int[] arr, int n) { // Start from bottommost and // rightmost internal node and // heapify all internal nodes // in bottom up way for (int i = (n - 2) / 2; i >= 0; --i) MaxHeapify(arr, i, n); } // A utility function to print // a given array of given size static void printArray(int[] arr, int size) { for (int i = 0; i < size; ++i) Console.Write(arr[i] + " "); } // Driver's Code public static void Main() { // array representing Min Heap int[] arr = { 3, 5, 9, 6, 8, 20, 10, 12, 18, 9 }; int n = arr.Length; Console.Write("Min Heap array : "); printArray(arr, n); // Function call convertMaxHeap(arr, n); Console.Write("\nMax Heap array : "); printArray(arr, n); } } // This code is contributed by nitin mittal.
PHP
<?php // A PHP program to convert min Heap to max Heap // utility swap function function swap(&$a,&$b) { $tmp=$a; $a=$b; $b=$tmp; } // to heapify a subtree with root at given index function MaxHeapify(&$arr, $i, $n) { $l = 2*$i + 1; $r = 2*$i + 2; $largest = $i; if ($l < $n && $arr[$l] > $arr[$i]) $largest = $l; if ($r < $n && $arr[$r] > $arr[$largest]) $largest = $r; if ($largest != $i) { swap($arr[$i], $arr[$largest]); MaxHeapify($arr, $largest, $n); } } // This function basically builds max heap function convertMaxHeap(&$arr, $n) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for ($i = (int)(($n-2)/2); $i >= 0; --$i) MaxHeapify($arr, $i, $n); } // A utility function to print a given array // of given size function printArray($arr, $size) { for ($i = 0; $i <$size; ++$i) print($arr[$i]." "); } // Driver code // array representing Min Heap $arr = array(3, 5, 9, 6, 8, 20, 10, 12, 18, 9); $n = count($arr); print("Min Heap array : "); printArray($arr, $n); convertMaxHeap($arr, $n); print("\nMax Heap array : "); printArray($arr, $n); // This code is contributed by mits ?>
Javascript
<script> // javascript program to convert min Heap to max Heap // To heapify a subtree with root at given index function MaxHeapify(arr , i , n) { var l = 2*i + 1; var r = 2*i + 2; var largest = i; if (l < n && arr[l] > arr[i]) largest = l; if (r < n && arr[r] > arr[largest]) largest = r; if (largest != i) { // swap arr[i] and arr[largest] var temp = arr[i]; arr[i] = arr[largest]; arr[largest] = temp; MaxHeapify(arr, largest, n); } } // This function basically builds max heap function convertMaxHeap(arr , n) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for (i = (n-2)/2; i >= 0; --i) MaxHeapify(arr, i, n); } // A utility function to print a given array // of given size function printArray(arr , size) { for (i = 0; i < size; ++i) document.write(arr[i]+" "); } // driver program // array representing Min Heap var arr = [3, 5, 9, 6, 8, 20, 10, 12, 18, 9]; var n = arr.length; document.write("Min Heap array : "); printArray(arr, n); convertMaxHeap(arr, n); document.write("<br>Max Heap array : "); printArray(arr, n); // This code is contributed by 29AjayKumar </script>
Min Heap array : 3 5 9 6 8 20 10 12 18 9 Max Heap array : 20 18 10 12 9 9 3 5 6 8
Time Complexity: O(N), for details, please refer: Time Complexity of building a heap
Auxiliary Space: O(N)
Please Login to comment...