Related Articles

Related Articles

Convert Floats to Integers in a Pandas DataFrame
  • Last Updated : 20 Aug, 2020

Let us see how to convert float to integer in a Pandas DataFrame. We will be using the astype() method to do this. It can also be done using the apply() method.

Method 1: Using DataFrame.astype() method

First of all we will create a DataFrame:

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing the library
import pandas as pd
  
# creating a DataFrame
list = [['Anton Yelchin', 36, 75.2, 54280.20], 
        ['Yul Brynner', 38, 74.32, 34280.30], 
        ['Lev Gorn', 31, 70.56, 84280.50],
        ['Alexander Godunov', 34, 80.30, 44280.80], 
        ['Oleg Taktarov', 40, 100.03, 45280.30],
        ['Dmitriy Pevtsov', 33, 72.99, 70280.25], 
        ['Alexander Petrov', 42, 85.84, 25280.75]]
df = pd.DataFrame(list, columns =['Name', 'Age', 'Weight', 'Salary'])
display(df)

chevron_right


Output :

Example 1 : Converting one column from float to int using DataFrame.astype()



filter_none

edit
close

play_arrow

link
brightness_4
code

# displaying the datatypes
display(df.dtypes)
  
# converting 'Weight' from float to int
df['Weight'] = df['Weight'].astype(int)
  
# displaying the datatypes
display(df.dtypes)

chevron_right


Output :

Example 2: Converting more than one column from float to int using DataFrame.astype()

filter_none

edit
close

play_arrow

link
brightness_4
code

# displaying the datatypes
display(df.dtypes)
  
# converting 'Weight' and 'Salary' from float to int
df = df.astype({"Weight":'int', "Salary":'int'}) 
  
# displaying the datatypes
display(df.dtypes)

chevron_right


Output :

Method 2: Using DataFrame.apply() method

First of all we will create a DataFrame.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing the module
import pandas as pd
  
# creating a DataFrame
list = [[15, 2.5, 100.22], [20, 4.5, 50.21], 
        [25, 5.2, 80.55], [45, 5.8, 48.86], 
        [40, 6.3, 70.99], [41, 6.4, 90.25], 
        [51, 2.3, 111.90]]
df = pd.DataFrame(list, columns = ['Field_1', 'Field_2', 'Field_3'],
                  index = ['a', 'b', 'c', 'd', 'e', 'f', 'g'])
display(df)

chevron_right


Output :

Example 1: Converting a single column from float to int using DataFrame.apply(np.int64)

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing the module
import numpy as np
  
# displaying the datatypes
display(df.dtypes)
  
# converting 'Field_2' from float to int
df['Field_2'] = df['Field_2'].apply(np.int64)
  
# displaying the datatypes
display(df.dtypes)

chevron_right


Output :

Example 2: Converting multiple columns from float to int using DataFrame.apply(np.int64)

filter_none

edit
close

play_arrow

link
brightness_4
code

# displaying the datatypes
display(df.dtypes)
  
# converting 'Field_2' and 'Field_3' from float to int
df['Field_2'] = df['Field_2'].apply(np.int64)
df['Field_3'] = df['Field_3'].apply(np.int64)
  
# displaying the datatypes
display(df.dtypes)

chevron_right


Output :

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :