Given two arrays A[] and B[], both consisting of a permutation of first N natural numbers, the task is to count the minimum number of times the last array element is required to be shifted to any arbitrary position in the array A[] to make both the arrays A[] and B[] equal.
Examples:
Input: A[] = {1, 2, 3, 4, 5}, B[] = {1, 5, 2, 3, 4}
Output:1
Explanation:
Initially, the array A[] is {1, 2, 3, 4, 5}. After moving the last array element, i.e. 5, and placing them between arr[0] (= 1) and arr[1](= 2) modifies the array to {1, 5, 2, 3, 4}, which is the same as the array B[].
Therefore, the minimum number of operations required to convert the array A[] to B[] is 1.
Input: A[] = {3, 2, 1}, B[] = {1, 2, 3}
Output: 2
Explanation:
Initially, the array A[] is {3, 2, 1}.
Operation 1: After moving the last array element, i.e. 1, to the beginning of the array, modifies the array to {1, 3, 2}.
Operation 2: After moving the last element of the array, i.e. 2 and placing them between the elements arr[0] (= 1) and arr[1] (= 3) modifies the array to {1, 2, 3}, which is the same as the array B[].
Therefore, the minimum number of operations required to convert the array A[] to B[] is 2.
Approach: The given problem can be solved by finding the first i consecutive elements of the first permutation which is the same as the subsequence of the second permutation, then the count of operations must be less at least (N – I), since the last (N – i) elements can be selected optimally and inserted at required indices. Therefore, (N – i) is the minimum number of steps required for the conversion of the array A[] to B[].
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
int minCount( int A[], int B[], int N)
{
int i = 0;
for ( int j = 0; j < N; j++) {
if (A[i] == B[j]) {
i++;
}
}
return N - i;
}
int main()
{
int A[] = { 1, 2, 3, 4, 5 };
int B[] = { 1, 5, 2, 3, 4 };
int N = sizeof (A) / sizeof (A[0]);
cout << minCount(A, B, N);
return 0;
}
|
Java
class GFG{
static int minCount( int A[], int B[], int N)
{
int i = 0 ;
for ( int j = 0 ; j < N; j++)
{
if (A[i] == B[j])
{
i++;
}
}
return N - i;
}
public static void main (String[] args)
{
int A[] = { 1 , 2 , 3 , 4 , 5 };
int B[] = { 1 , 5 , 2 , 3 , 4 };
int N = A.length;
System.out.println(minCount(A, B, N));
}
}
|
Python3
def minCount(A, B, N):
i = 0
for j in range (N):
if (A[i] = = B[j]):
i + = 1
return N - i
if __name__ = = '__main__' :
A = [ 1 , 2 , 3 , 4 , 5 ]
B = [ 1 , 5 , 2 , 3 , 4 ]
N = len (A)
print (minCount(A, B, N))
|
C#
using System;
class GFG{
static int minCount( int [] A, int [] B, int N)
{
int i = 0;
for ( int j = 0; j < N; j++)
{
if (A[i] == B[j])
{
i++;
}
}
return N - i;
}
public static void Main( string [] args)
{
int [] A = { 1, 2, 3, 4, 5 };
int [] B = { 1, 5, 2, 3, 4 };
int N = A.Length;
Console.WriteLine(minCount(A, B, N));
}
}
|
Javascript
<script>
function minCount(A, B, N){
var i = 0
for (let j = 0; j < N; j++){
if (A[i] == B[j])
i += 1
}
return N - i
}
var A = [ 1, 2, 3, 4, 5 ]
var B = [ 1, 5, 2, 3, 4 ]
N = A.length
document.write(minCount(A, B, N))
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)