Open In App
Related Articles

Convert an array into another by repeatedly removing the last element and placing it at any arbitrary index

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two arrays A[] and B[], both consisting of a permutation of first N natural numbers, the task is to count the minimum number of times the last array element is required to be shifted to any arbitrary position in the array A[] to make both the arrays A[] and B[] equal.

Examples:

Input: A[] = {1, 2, 3, 4, 5}, B[] = {1, 5, 2, 3, 4}
Output:1
Explanation:
Initially, the array A[] is {1, 2, 3, 4, 5}. After moving the last array element, i.e. 5, and placing them between arr[0] (= 1) and arr[1](= 2) modifies the array to {1, 5, 2, 3, 4}, which is the same as the array B[].
Therefore, the minimum number of operations required to convert the array A[] to B[] is 1.

Input: A[] = {3, 2, 1}, B[] = {1, 2, 3}
Output: 2
Explanation:
Initially, the array A[] is {3, 2, 1}.
Operation 1: After moving the last array element, i.e. 1, to the beginning of the array, modifies the array to {1, 3, 2}.
Operation 2: After moving the last element of the array, i.e. 2 and placing them between the elements arr[0] (= 1) and arr[1] (= 3) modifies the array to {1, 2, 3}, which is the same as the array B[].
Therefore, the minimum number of operations required to convert the array A[] to B[] is 2.

Approach: The given problem can be solved by finding the first i consecutive elements of the first permutation which is the same as the subsequence of the second permutation, then the count of operations must be less at least (N – I), since the last (N – i) elements can be selected optimally and inserted at required indices. Therefore, (N – i) is the minimum number of steps required for the conversion of the array A[] to B[].

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <iostream>
using namespace std;
 
// Function to count the minimum number
// of operations required to convert
// the array A[] into array B[]
int minCount(int A[], int B[], int N)
{
    // Stores the index in the first
    // permutation A[] which is same
    // as the subsequence in B[]
    int i = 0;
 
    // Find the first i elements in A[]
    // which is a subsequence in B[]
    for (int j = 0; j < N; j++) {
 
        // If element A[i]
        // is same as B[j]
        if (A[i] == B[j]) {
            i++;
        }
    }
 
    // Return the count of
    // operations required
    return N - i;
}
 
// Driver Code
int main()
{
    int A[] = { 1, 2, 3, 4, 5 };
    int B[] = { 1, 5, 2, 3, 4 };
 
    int N = sizeof(A) / sizeof(A[0]);
 
    cout << minCount(A, B, N);
 
    return 0;
}

Java




// Java program for the above approach
class GFG{
     
// Function to count the minimum number
// of operations required to convert
// the array A[] into array B[]
static int minCount(int A[], int B[], int N)
{
     
    // Stores the index in the first
    // permutation A[] which is same
    // as the subsequence in B[]
    int i = 0;
 
    // Find the first i elements in A[]
    // which is a subsequence in B[]
    for(int j = 0; j < N; j++)
    {
         
        // If element A[i]
        // is same as B[j]
        if (A[i] == B[j])
        {
            i++;
        }
    }
 
    // Return the count of
    // operations required
    return N - i;
}
 
// Driver Code
public static void main (String[] args)
{
    int A[] = { 1, 2, 3, 4, 5 };
    int B[] = { 1, 5, 2, 3, 4 };
    int N = A.length;
 
    System.out.println(minCount(A, B, N));
}
}
 
// This code is contributed by AnkThon

Python3




# Python3 program for the above approach
 
# Function to count the minimum number
# of operations required to convert
# the array A[] into array B[]
def minCount(A, B, N):
     
    # Stores the index in the first
    # permutation A[] which is same
    # as the subsequence in B[]
    i = 0
 
    # Find the first i elements in A[]
    # which is a subsequence in B[]
    for j in range(N):
         
        # If element A[i]
        # is same as B[j]
        if (A[i] == B[j]):
            i += 1
 
    # Return the count of
    # operations required
    return N - i
 
# Driver Code
if __name__ == '__main__':
     
    A = [ 1, 2, 3, 4, 5 ]
    B = [ 1, 5, 2, 3, 4 ]
 
    N = len(A)
 
    print(minCount(A, B, N))
     
# This code is contributed by ipg2016107

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count the minimum number
// of operations required to convert
// the array A[] into array B[]
static int minCount(int[] A, int[] B, int N)
{
     
    // Stores the index in the first
    // permutation A[] which is same
    // as the subsequence in B[]
    int i = 0;
 
    // Find the first i elements in A[]
    // which is a subsequence in B[]
    for(int j = 0; j < N; j++)
    {
         
        // If element A[i]
        // is same as B[j]
        if (A[i] == B[j])
        {
            i++;
        }
    }
 
    // Return the count of
    // operations required
    return N - i;
}
 
// Driver Code
public static void Main(string[] args)
{
    int[] A = { 1, 2, 3, 4, 5 };
    int[] B = { 1, 5, 2, 3, 4 };
    int N = A.Length;
 
    Console.WriteLine(minCount(A, B, N));
}
}
 
// This code is contributed by ukasp

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to count the minimum number
// of operations required to convert
// the array A[] into array B[]
function minCount(A, B, N){
     
    // Stores the index in the first
    // permutation A[] which is same
    // as the subsequence in B[]
    var i = 0
 
    // Find the first i elements in A[]
    // which is a subsequence in B[]
    for(let j = 0; j < N; j++){
         
        // If element A[i]
        // is same as B[j]
        if (A[i] == B[j])
            i += 1
      }
    // Return the count of
    // operations required
    return N - i
     
}
 
// Driver Code
     
var A = [ 1, 2, 3, 4, 5 ]
var B = [ 1, 5, 2, 3, 4 ]
 
N = A.length
 
document.write(minCount(A, B, N))
     
// This code is contributed by AnkThon
 
</script>

Output: 

1

 

Time Complexity: O(N)
Auxiliary Space: O(1)

 


Last Updated : 16 Apr, 2021
Like Article
Save Article
Similar Reads
Related Tutorials