In this article, we are going to see different methods to save an NumPy array into a CSV file. CSV file format is the easiest and useful format for storing data
There are different methods by which we can save the NumPy array into a CSV file
Method 1: Using Dataframe.to_csv().
This method is used to write a Dataframe into a CSV file.
Example: Converting the array into pandas Dataframe and then saving it to CSV format.
Python3
# import necessary libraries import pandas as pd import numpy as np # create a dummy array arr = np.arange( 1 , 11 ).reshape( 2 , 5 ) # display the array print (arr) # convert array into dataframe DF = pd.DataFrame(arr) # save the dataframe as a csv file DF.to_csv( "data1.csv" ) |
Output:
[[ 1 2 3 4 5] [ 6 7 8 9 10]]
Method 2: Using numpy_array.tofile().
This method is used to write an array into the file.
Example: Create an array then save into a CSV file.
Python3
# import the necessary library import numpy as np # create a dummy array arr = np.arange( 1 , 11 ) # display the array print (arr) # use the tofile() method # and use ',' as a separator # as we have to generate a csv file arr.tofile( 'data2.csv' , sep = ',' ) |
Output:
[ 1 2 3 4 5 6 7 8 9 10]
Method 3: Using numpy.savetext().
This method is used to save an array to a text file.
Example: Create an array then save as a CSV file.
Python3
# import numpy library import numpy # create an array a = numpy.array([[ 1 , 6 , 4 ], [ 2 , 4 , 8 ], [ 3 , 9 , 1 ]]) # save array into csv file numpy.savetxt( "data3.csv" , a, delimiter = "," ) |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.