Convert a Generic Tree(N-array Tree) to Binary Tree
Prerequisite: Generic Trees(N-array Trees)
In this article, we will discuss the conversion of the Generic Tree to a Binary Tree. Following are the rules to convert a Generic(N-array Tree) to a Binary Tree:
- The root of the Binary Tree is the Root of the Generic Tree.
- The left child of a node in the Generic Tree is the Left child of that node in the Binary Tree.
- The right sibling of any node in the Generic Tree is the Right child of that node in the Binary Tree.
Examples:
Convert the following Generic Tree to Binary Tree:
Below is the Binary Tree of the above Generic Tree:
Note: If the parent node has only the right child in the general tree then it becomes the rightmost child node of the last node following the parent node in the binary tree. In the above example, if node B has the right child node L then in binary tree representation L would be the right child of node D.
Below are the steps for the conversion of Generic Tree to Binary Tree:
- As per the rules mentioned above, the root node of general tree A is the root node of the binary tree.
- Now the leftmost child node of the root node in the general tree is B and it is the leftmost child node of the binary tree.
- Now as B has E as its leftmost child node, so it is its leftmost child node in the binary tree whereas it has C as its rightmost sibling node so it is its right child node in the binary tree.
- Now C has F as its leftmost child node and D as its rightmost sibling node, so they are its left and right child node in the binary tree respectively.
- Now D has I as its leftmost child node which is its left child node in the binary tree but doesn’t have any rightmost sibling node, so doesn’t have any right child in the binary tree.
- Now for I, J is its rightmost sibling node and so it is its right child node in the binary tree.
- Similarly, for J, K is its leftmost child node and thus it is its left child node in the binary tree.
- Now for C, F is its leftmost child node, which has G as its rightmost sibling node, which has H as its just right sibling node and thus they form their left, right, and right child node respectively.
Example :
C++
#include <iostream> #include <vector> class TreeNode { public : int val; TreeNode* left; TreeNode* right; std::vector<TreeNode*> children; TreeNode( int val) { this ->val = val; this ->left = this ->right = nullptr; } }; TreeNode* convert(TreeNode* root) { if (!root) { return nullptr; } if (root->children.size() == 0) { return root; } if (root->children.size() == 1) { root->left = convert(root->children[0]); return root; } root->left = convert(root->children[0]); root->right = convert(root->children[1]); for ( int i = 2; i < root->children.size(); i++) { TreeNode* rightTreeRoot = root->right; while (rightTreeRoot->left != nullptr) { rightTreeRoot = rightTreeRoot->left; } rightTreeRoot->left = convert(root->children[i]); } return root; } void printTree(TreeNode* root) { if (!root) { return ; } std::cout << root->val << " " ; printTree(root->left); printTree(root->right); } int main() { TreeNode* root = new TreeNode(1); root->children.push_back( new TreeNode(2)); root->children.push_back( new TreeNode(3)); root->children.push_back( new TreeNode(4)); root->children.push_back( new TreeNode(5)); root->children[0]->children.push_back( new TreeNode(6)); root->children[0]->children.push_back( new TreeNode(7)); root->children[3]->children.push_back( new TreeNode(8)); root->children[3]->children.push_back( new TreeNode(9)); TreeNode* binaryTreeRoot = convert(root); // Output: 1 2 3 4 5 6 7 8 9 printTree(binaryTreeRoot); } |
Java
import java.util.ArrayList; import java.util.List; public class GenericTreeToBinaryTree { public static class TreeNode { int val; TreeNode left,right; List<TreeNode> children; public TreeNode( int val) { this .val = val; this .children = new ArrayList<>(); } } public static TreeNode convert(TreeNode root) { if (root == null ) { return null ; } if (root.children.size() == 0 ) { return root; } if (root.children.size() == 1 ) { root.left = convert(root.children.get( 0 )); return root; } root.left = convert(root.children.get( 0 )); root.right = convert(root.children.get( 1 )); List<TreeNode> remainingChildren = root.children.subList( 2 , root.children.size()); TreeNode rightTreeRoot = root.right; while (remainingChildren.size() > 0 ) { if (rightTreeRoot.children.size() == 0 ) { rightTreeRoot.left = convert(remainingChildren.get( 0 )); } else { rightTreeRoot.right = convert(remainingChildren.get( 0 )); } remainingChildren = remainingChildren.subList( 1 , remainingChildren.size()); } return root; } public static void main(String[] args) { TreeNode root = new TreeNode( 1 ); root.children.add( new TreeNode( 2 )); root.children.add( new TreeNode( 3 )); root.children.add( new TreeNode( 4 )); root.children.add( new TreeNode( 5 )); root.children.get( 0 ).children.add( new TreeNode( 6 )); root.children.get( 0 ).children.add( new TreeNode( 7 )); root.children.get( 3 ).children.add( new TreeNode( 8 )); root.children.get( 3 ).children.add( new TreeNode( 9 )); TreeNode binaryTreeRoot = convert(root); // Output: 1 2 3 4 5 6 7 8 9 printTree(binaryTreeRoot); } public static void printTree(TreeNode root) { if (root == null ) { return ; } System.out.print(root.val + " " ); printTree(root.left); printTree(root.right); } } |
Python3
class TreeNode: def __init__( self , val): self .val = val self .left = None self .right = None self .children = [] def convert(root): if not root: return None if len (root.children) = = 0 : return root if len (root.children) = = 1 : root.left = convert(root.children[ 0 ]) return root root.left = convert(root.children[ 0 ]) root.right = convert(root.children[ 1 ]) for i in range ( 2 , len (root.children)): rightTreeRoot = root.right while rightTreeRoot.left ! = None : rightTreeRoot = rightTreeRoot.left rightTreeRoot.left = convert(root.children[i]) return root def printTree(root): if not root: return print (root.val, end = " " ) printTree(root.left) printTree(root.right) root = TreeNode( 1 ) root.children.append(TreeNode( 2 )) root.children.append(TreeNode( 3 )) root.children.append(TreeNode( 4 )) root.children.append(TreeNode( 5 )) root.children[ 0 ].children.append(TreeNode( 6 )) root.children[ 0 ].children.append(TreeNode( 7 )) root.children[ 3 ].children.append(TreeNode( 8 )) root.children[ 3 ].children.append(TreeNode( 9 )) binaryTreeRoot = convert(root) # Output: 1 2 3 4 5 6 7 8 9 printTree(binaryTreeRoot) |
C#
using System; using System.Collections.Generic; class TreeNode { // Value of the node public int val; // Pointer to the left child of // the node (used to represent the // n-ary tree as a binary tree) public TreeNode left; // Pointer to the right child of the node // (used to represent the n-ary tree as a // binary tree) public TreeNode right; // List of children of the node (used to // represent the n-ary tree) public List<TreeNode> children; // Constructor to initialize the node with a given value public TreeNode( int val) { this .val = val; this .left = this .right = null ; this .children = new List<TreeNode>(); } } class Program { // Convert the given n-ary tree to binary tree static TreeNode Convert(TreeNode root) { // If root is null, return null if (root == null ) { return null ; } // If root has no children, return root if (root.children.Count == 0) { return root; } // If root has only one child, make the // child as the left child of root if (root.children.Count == 1) { root.left = Convert(root.children[0]); return root; } // If root has more than one child, make the first // child as the left child of root and the second // child as the right child of root root.left = Convert(root.children[0]); root.right = Convert(root.children[1]); // For each of the remaining children, create a new // binary tree and add it as the left child of the // rightmost node in the binary tree of the previous // child for ( int i = 2; i < root.children.Count; i++) { TreeNode rightTreeRoot = root.right; while (rightTreeRoot.left != null ) { rightTreeRoot = rightTreeRoot.left; } rightTreeRoot.left = Convert(root.children[i]); } // Return the root of the binary tree return root; } // Print the binary tree in pre-order traversal static void PrintTree(TreeNode root) { // If root is null, return if (root == null ) { return ; } // Print the value of the node Console.Write(root.val + " " ); // Recursively print the left // subtree PrintTree(root.left); // Recursively print the // right subtree PrintTree(root.right); } static void Main( string [] args) { // Create an n-ary tree TreeNode root = new TreeNode(1); root.children.Add( new TreeNode(2)); root.children.Add( new TreeNode(3)); root.children.Add( new TreeNode(4)); root.children.Add( new TreeNode(5)); root.children[0].children.Add( new TreeNode(6)); root.children[0].children.Add( new TreeNode(7)); root.children[3].children.Add( new TreeNode(8)); root.children[3].children.Add( new TreeNode(9)); // Convert the n-ary tree to binary tree TreeNode binaryTreeRoot = Convert(root); // Print the binary tree in pre-order traversal // Expected output: 1 2 3 4 5 6 7 8 9 PrintTree(binaryTreeRoot); } } // This code is contributed by Shivam Tiwari |
Javascript
class TreeNode { constructor(val) { this .val = val; this .left = null ; this .right = null ; this .children = []; } } // Converts a tree with multiple children to a binary tree function convert(root) { // If the root is null, return null if (!root) { return null ; } // If the node has no children, return the node if (root.children.length === 0) { return root; } // If the node has one child, set it as the left child and return the node if (root.children.length === 1) { root.left = convert(root.children[0]); return root; } // If the node has two or more children, set the first two as left and right child and // attach the rest of the children to the right subtree root.left = convert(root.children[0]); root.right = convert(root.children[1]); for (let i = 2; i < root.children.length; i++) { let rightTreeRoot = root.right; // Find the leftmost node in the right subtree to attach the rest of the children while (rightTreeRoot.left !== null ) { rightTreeRoot = rightTreeRoot.left; } rightTreeRoot.left = convert(root.children[i]); } return root; } // Prints the tree in pre-order function printTree(root) { // If the root is null, return if (!root) { return ; } console.log(root.val); printTree(root.left); printTree(root.right); } // Example usage let root = new TreeNode(1); root.children.push( new TreeNode(2)); root.children.push( new TreeNode(3)); root.children.push( new TreeNode(4)); root.children.push( new TreeNode(5)); root.children[0].children.push( new TreeNode(6)); root.children[0].children.push( new TreeNode(7)); root.children[3].children.push( new TreeNode(8)); root.children[3].children.push( new TreeNode(9)); let binaryTreeRoot = convert(root); printTree(binaryTreeRoot); |
1 2 6 7 3 4 5 8 9
Time Complexity: O(n)
Auxiliary Space: O(h)
Approach-2:-Converting a generic tree to a binary tree using a pre-order traversal
The first approach involves converting a generic tree to a binary tree using a pre-order traversal. The steps involved in this approach are as follows:
Create a binary tree node with the data of the current node in the generic tree.
Set the left child of the binary tree node to be the result of recursively converting the first child of the current node in the generic tree.
Set the right child of the binary tree node to be the result of recursively converting the next sibling of the current node in the generic tree.
Return the binary tree node.
The time complexity of this approach is O(n), where n is the number of nodes in the generic tree.
Here’s the main function for this approach:
C++
#include <iostream> #include <vector> using namespace std; struct TreeNode { int val; TreeNode *left, *right; TreeNode( int x) : val(x), left(NULL), right(NULL) {} }; struct Node { int val; vector<Node *> children; Node( int x) : val(x) {} }; TreeNode *generic_to_binary(Node *root) { if (root == NULL) { return NULL; } TreeNode *binaryRoot = new TreeNode(root->val); if (root->children.size() > 0) { binaryRoot->left = generic_to_binary(root->children[0]); } TreeNode *current = binaryRoot->left; for ( int i = 1; i < root->children.size(); i++) { Node *child = root->children[i]; current->right = generic_to_binary(child); current = current->right; } return binaryRoot; } void printTree(TreeNode *root) { if (root == NULL) { return ; } cout << root->val << " " ; printTree(root->left); printTree(root->right); } int main() { Node *root = new Node(1); root->children.push_back( new Node(2)); root->children.push_back( new Node(3)); root->children.push_back( new Node(4)); root->children.push_back( new Node(5)); root->children[0]->children.push_back( new Node(6)); root->children[0]->children.push_back( new Node(7)); root->children[3]->children.push_back( new Node(8)); root->children[3]->children.push_back( new Node(9)); TreeNode *binaryTreeRoot = generic_to_binary(root); printTree(binaryTreeRoot); return 0; } |
Java
// Java program for the above approach import java.util.*; class TreeNode { int val; TreeNode left, right; TreeNode( int x) { val = x; left = null ; right = null ; } } class Node { int val; List<Node> children; Node( int x) { val = x; children = new ArrayList<Node>(); } } class Main { public static TreeNode generic_to_binary(Node root) { if (root == null ) { return null ; } TreeNode binaryRoot = new TreeNode(root.val); if (root.children.size() > 0 ) { binaryRoot.left = generic_to_binary(root.children.get( 0 )); } TreeNode current = binaryRoot.left; for ( int i = 1 ; i < root.children.size(); i++) { Node child = root.children.get(i); current.right = generic_to_binary(child); current = current.right; } return binaryRoot; } public static void printTree(TreeNode root) { if (root == null ) { return ; } System.out.print(root.val + " " ); printTree(root.left); printTree(root.right); } public static void main(String[] args) { Node root = new Node( 1 ); root.children.add( new Node( 2 )); root.children.add( new Node( 3 )); root.children.add( new Node( 4 )); root.children.add( new Node( 5 )); root.children.get( 0 ).children.add( new Node( 6 )); root.children.get( 0 ).children.add( new Node( 7 )); root.children.get( 3 ).children.add( new Node( 8 )); root.children.get( 3 ).children.add( new Node( 9 )); TreeNode binaryTreeRoot = generic_to_binary(root); printTree(binaryTreeRoot); } } // This code is contributed by Prince Kumar |
Python3
class TreeNode: def __init__( self , val): self .val = val self .left = None self .right = None self .children = [] def generic_to_binary(root: 'Node' ) - > TreeNode: if not root: return None # create a binary tree node with the data of the current node binary_node = TreeNode(root.val) # convert the first child to a binary tree and set as left child of binary_node if root.children: binary_node.left = generic_to_binary(root.children[ 0 ]) # convert the next sibling to a binary tree and set as right child of binary_node current = binary_node.left for child in root.children[ 1 :]: current.right = generic_to_binary(child) current = current.right return binary_node def printTree(root): if not root: return print (root.val, end = " " ) printTree(root.left) printTree(root.right) root = TreeNode( 1 ) root.children.append(TreeNode( 2 )) root.children.append(TreeNode( 3 )) root.children.append(TreeNode( 4 )) root.children.append(TreeNode( 5 )) root.children[ 0 ].children.append(TreeNode( 6 )) root.children[ 0 ].children.append(TreeNode( 7 )) root.children[ 3 ].children.append(TreeNode( 8 )) root.children[ 3 ].children.append(TreeNode( 9 )) binaryTreeRoot = generic_to_binary(root) # Output: 1 2 6 7 3 4 5 8 9 printTree(binaryTreeRoot) |
C#
// C# program for the above approach using System; using System.Collections.Generic; public class TreeNode { public int val; public TreeNode left, right; public TreeNode( int x) { val = x; left = null ; right = null ; } } public class Node { public int val; public List<Node> children; public Node( int x) { val = x; children = new List<Node>(); } } public class MainClass { public static TreeNode generic_to_binary(Node root) { if (root == null ) { return null ; } TreeNode binaryRoot = new TreeNode(root.val); if (root.children.Count > 0) { binaryRoot.left = generic_to_binary(root.children[0]); } TreeNode current = binaryRoot.left; for ( int i = 1; i < root.children.Count; i++) { Node child = root.children[i]; current.right = generic_to_binary(child); current = current.right; } return binaryRoot; } public static void printTree(TreeNode root) { if (root == null ) { return ; } Console.Write(root.val + " " ); printTree(root.left); printTree(root.right); } public static void Main() { Node root = new Node(1); root.children.Add( new Node(2)); root.children.Add( new Node(3)); root.children.Add( new Node(4)); root.children.Add( new Node(5)); root.children[0].children.Add( new Node(6)); root.children[0].children.Add( new Node(7)); root.children[3].children.Add( new Node(8)); root.children[3].children.Add( new Node(9)); TreeNode binaryTreeRoot = generic_to_binary(root); printTree(binaryTreeRoot); } } // This code is contributed rishabmalhdijo |
Javascript
class TreeNode { constructor(val) { this .val = val; this .left = null ; this .right = null ; this .children = []; } } function generic_to_binary(root) { if (!root) { return null ; } // create a binary tree node with the data of the current node const binary_node = new TreeNode(root.val); // convert the first child to a binary tree and set as left child of binary_node if (root.children.length > 0) { binary_node.left = generic_to_binary(root.children[0]); } // convert the next sibling to a binary tree and set as right child of binary_node let current = binary_node.left; for (let i = 1; i < root.children.length; i++) { current.right = generic_to_binary(root.children[i]); current = current.right; } return binary_node; } function printTree(root) { if (!root) { return ; } console.log(root.val); printTree(root.left); printTree(root.right); } const root = new TreeNode(1); root.children.push( new TreeNode(2)); root.children.push( new TreeNode(3)); root.children.push( new TreeNode(4)); root.children.push( new TreeNode(5)); root.children[0].children.push( new TreeNode(6)); root.children[0].children.push( new TreeNode(7)); root.children[3].children.push( new TreeNode(8)); root.children[3].children.push( new TreeNode(9)); const binaryTreeRoot = generic_to_binary(root); // Output: 1 2 6 7 3 4 5 8 9 printTree(binaryTreeRoot); |
1 2 6 7 3 4 5 8 9
Time Complexity : O(N)
Auxiliary Space : O(N)
Please Login to comment...