Conversion Functions in R Programming

Sometimes to analyze data using R, we need to convert data into another data type. As we know R has the following data types Numeric, Integer, Logical, Character, etc. similarly R has various conversion functions that are used to convert the data type.

In R, Conversion Function are of two types:

  • Conversion Functions for Data Types
  • Conversion Functions for Data Structures

Conversion Functions For Data Types

There are various conversion functions available for Data Types. These are:

  • as.numeric()

    Decimal value known numeric values in R. It is the default data type for real numbers in R. In R as.numeric() converts any values into numeric values.
    Syntax:

    // Conversion into numeric data type
    as.numeric(x)
    

    Example:



    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # A simple R program to convert 
    # character data type into numeric data type
    x<-c('1', '2', '3')
      
    # Print x
    print(x)
      
    # Print the type of x
    print(typeof(x))
      
    # Conversion into numeric data type
    y<-as.numeric(x)
      
    # print the type of y
    print(typeof(y))

    chevron_right

    
    

    Output:

    [1] "1" "2" "3"
    [1] "character"
    [1] "double"
    
  • as.integer()
    In R, Integer data type is a collection of all integers. In order to create an integer variable in R and convert any data type in to Integer we use as.integer() function.
    Syntax:

    // Conversion of any data type into Integer data type
    as.integer(x)
    

    Example:

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # A simple R program to convert
    # numeric data type into integer data type
    x<-c(1.3, 5.6, 55.6)
      
    # Print x
    print(x)
      
    # Print type of x
    print(typeof(x))
      
    # Conversion into integer data type
    y<-as.integer(x)
      
    # Print y
    print(y)
      
    # Print type of y
    print(typeof(y))

    chevron_right

    
    

    Output:

    [1]  1.3  5.6 55.6
    [1] "double"
    [1]  1  5 55
    [1] "integer"
    
  • as.character()
    In R, character data is used to store character value and string. To create an character variable in R, we invoke the as.character() function and also if we want to convert any data type in to character we use as.character() function.
    Syntax:

    // Conversion of any data type into character data type
    as.character(x)
    

    Example:

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    x<-c(1.3, 5.6, 55.6)
      
    # Print x
    print(x)
      
    # Print type of x
    print(typeof(x))
      
    # Conversion into character data type
    y<-as.character(x)
      
    # Print y
    print(y)
      
    # Print type of y
    print(typeof(y))

    chevron_right

    
    

    Output:

    [1]  1.3  5.6 55.6
    [1] "double"
    [1] "1.3"  "5.6"  "55.6"
    [1] "character"
    
  • as.logical()
    Logical value is created to compare variables which return either true or false.To compare variables and to convert any value in to true or false, R uses as.logical() function.
    Syntax:



    // Conversion of any data type into logical data type
    as.logical(x)
    

    Example:

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    x = 3
    y = 8
      
    # Conversion in to logical value
    result<-as.logical(x>y)
      
    # Print result
    print(result)

    chevron_right

    
    

    Output:

    [1] FALSE
    
  • as.date()
    In R as.date() function is used to convert string into date format.

    Syntax:

    // Print string into date format
    as.date(variable, "%m/%d/%y")
    

    Example:

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    dates <- c("02/27/92", "02/27/92"
               "01/14/92", "02/28/92"
               "02/01/92")
      
    # Conversion into date format
    result<-as.Date(dates, "%m/%d/%y")
      
    # Print result
    print(result)

    chevron_right

    
    

    Output:

    [1] "1992-02-27" "1992-02-27" "1992-01-14" "1992-02-28" "1992-02-01"
    

Conversion Functions For Data Structure

There are various conversion functions available for Data Structure. These are:

  • as.data.frame()
    Data Frame is used to store data tables. Which is list of vectors of equal length. In R, sometimes to analyse data we need to convert list of vector into data.frame. So for this R uses as.data.frame() function to convert list of vector into data frame.
    Syntax:

    // Conversion of any data structure into data frame
    as.data.frame(x)
    

    Example:

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    x<- list( c('a', 'b', 'c'),
    c('e', 'f', 'g'), c('h', 'i', 'j'))
      
    # Print x
    print(x)
      
    # Conversion in to data frame
    y<-as.data.frame(x)
      
    # Print y
    print(y)

    chevron_right

    
    

    Output:

    [[1]]
    [1] "a" "b" "c"
    
    [[2]]
    [1] "e" "f" "g"
    
    [[3]]
    [1] "h" "i" "j"
    
      c..a....b....c.. c..e....f....g.. c..h....i....j..
    1                a                e                h
    2                b                f                i
    3                c                g                j
    
  • as.vector()
    R has a function as.vector() which is used to convert a distributed matrix into a non-distributed vector. Vector generates a vector of the given length and mode.
    Syntax:

    // Conversion of any data structure into vector
    as.vector(x)
    

    Example:

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    x<-c(a=1, b=2)
      
    # Print x
    print(x)
      
    # Conversion into vector
    y<-as.vector(x)
      
    # Print y
    print(y)

    chevron_right

    
    

    Output:

    a b 
    1 2 
    [1] 1 2
    
  • as.matrix()
    In R, there is a function as.matrix() which is used to convert a data.table into a matrix, optionally using one of the columns in the data.table as the matrix row names.
    Syntax:

    // Conversion into matrix
    as.matrix(x)
    

    Example:

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # Importing library
    library(data.table)
    x <- data.table(A = letters[1:5], X = 1:5, Y = 6:10)
      
    # Print x
    print(x)
      
    # Conversion into matrix
    z<-as.matrix(x)
      
    # Print z
    print(z)

    chevron_right

    
    

    Output:

       A X  Y
    1: a 1  6
    2: b 2  7
    3: c 3  8
    4: d 4  9
    5: e 5 10
         A   X   Y   
    [1,] "a" "1" " 6"
    [2,] "b" "2" " 7"
    [3,] "c" "3" " 8"
    [4,] "d" "4" " 9"
    [5,] "e" "5" "10"
    



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :

1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.