Content of a Polynomial

Given an array arr[] which denotes the integer coefficients of the polynomial, the task is to find the content of polynomial.
 

Content of polynomials with integer coefficients is defined as the greatest common divisor of its integer coefficients.
That is for:

F(x) = amxm + am-1xm-1 + ……..+a1x + a0
Then, Content of Polynomial = gcd(am, am-1, am-2…., a1, a0)

Examples: 

Input: arr[]  = {9, 30, 12} 
Output: 3
Explanation:
Given Polynomial can be: 9x2 + 30x + 12
Therefore, Content = gcd(9, 30, 12) = 3



Input: arr[] = {2, 4, 6}
Output: 2

 

Approach: The idea is to find the Greatest common divisor of all the elements of the array which can be computed by finding the GCD repeatedly by choosing two elements at a time. That is:

gcd(a, b, c)
 = gcd(gcd(a, b), c)
 = gcd(a, gcd(b, c))
 = gcd(gcd(a, c), b)


Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find the
// content of the polynomial
  
#include <bits/stdc++.h>
using namespace std;
  
#define newl "\n"
#define ll long long
#define pb push_back
  
// Function to find the content
// of the polynomial
int findContent(int arr[], int n)
{
    int content = arr[0];
  
    // Loop to iterate over the
    // elements of the array
    for (int i = 1; i < n; i++) {
  
        //__gcd(a, b) is a inbuilt
        // function for Greatest
        // Common Divisor
        content = __gcd(content, arr[i]);
    }
  
    return content;
}
  
// Driver Code
int main()
{
    int n = 3;
    int arr[] = { 9, 6, 12 };
  
    // Function call
    cout << findContent(arr, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find the
// content of the polynomial
class GFG{
  
// Function to find the content
// of the polynomial
static int findContent(int arr[], int n)
{
    int content = arr[0];
  
    // Loop to iterate over the
    // elements of the array
    for(int i = 1; i < n; i++) 
    {
          
        //__gcd(a, b) is a inbuilt
        // function for Greatest
        // Common Divisor
        content = __gcd(content, arr[i]);
    }
    return content;
}
  
static int __gcd(int a, int b) 
    return b == 0 ? a : __gcd(b, a % b);     
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 3;
    int arr[] = { 9, 6, 12 };
  
    // Function call
    System.out.print(findContent(arr, n));
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find the
# content of the polynomial
from math import gcd
  
# Function to find the content
# of the polynomial
def findContent(arr, n):
      
    content = arr[0]
  
    # Loop to iterate over the
    # elements of the array
    for i in range(1, n):
  
        # __gcd(a, b) is a inbuilt
        # function for Greatest
        # Common Divisor
        content = gcd(content, arr[i])
  
    return content
  
# Driver Code
if __name__ == '__main__':
      
    n = 3
    arr = [ 9, 6, 12 ]
  
    # Function call
    print(findContent(arr, n))
  
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find the
// content of the polynomial
using System;
  
class GFG{
  
// Function to find the content
// of the polynomial
static int findContent(int []arr, int n)
{
    int content = arr[0];
  
    // Loop to iterate over the
    // elements of the array
    for(int i = 1; i < n; i++) 
    {
          
        //__gcd(a, b) is a inbuilt
        // function for Greatest
        // Common Divisor
        content = __gcd(content, arr[i]);
    }
    return content;
}
  
static int __gcd(int a, int b) 
    return b == 0 ? a : __gcd(b, a % b);     
}
  
// Driver Code
public static void Main(String[] args)
{
    int n = 3;
    int []arr = { 9, 6, 12 };
  
    // Function call
    Console.Write(findContent(arr, n));
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Output: 

3

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.