Skip to content
Related Articles

Related Articles

Improve Article

Construct XOR tree by Given leaf nodes of Perfect Binary Tree

  • Difficulty Level : Hard
  • Last Updated : 03 Jun, 2021
Geek Week

Given the leaf nodes of a perfect binary tree, the task is to construct the XOR tree and print the root node of this tree. 
An XOR tree is a tree whose parent node is the XOR of the left child and the right child node of the tree. 
Parent node = Left child node ^ Right child node 

Examples: 

Input: arr = {40, 32, 12, 1, 4, 3, 2, 7} 
Output: Nodes of the XOR tree 
7 5 2 8 13 7 5 40 32 12 1 4 3 2 7
Root: 7 
Explanation: 
 

It it a XOR Tree which is constructed by given leaf nodes of Perfect Binary tree



Input: arr = {5, 7, 2, 8, 12, 3, 9, 1} 
Output: Nodes of the XOR tree 
15 8 7 2 10 15 8 5 7 2 8 12 3 9 1
Root: 15

Input: arr = {4, 2, 10, 1, 14, 30, 21, 7} 
Output: Nodes of the XOR tree 
15 13 2 6 11 16 18 4 2 10 1 14 30 21 7 
Root: 15
 

Input: arr = {1, 2, 3, 4} 
Output: Nodes of the XOR tree 
4 3 7 1 2 3 4 
Root: 4
 

Input: arr = {47, 62, 8, 10, 4, 3, 1, 7} 
Output: Nodes of the XOR tree 
18 19 1 17 2 7 6 47 62 8 10 4 3 1 7 
Root: 18

Approach: 

  1. Since it’s a perfect binary tree, there are a total of 2^h-1 nodes, where h is the height of the XOR tree.
  2. Since leaf nodes of a perfect binary tree are given, the root node is built by first building the left and right subtrees recursively.
  3. Every node in the left and right subtrees is formed by performing the XOR operation on their children.

Below is the implementation of the above approach.

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Maximum size for xor tree
int maxsize = 100005;
 
// Allocating space to xor tree
vector<int> xor_tree(maxsize);
 
// A recursive function that constructs xor tree
// for vector array[start.....end].
// x is index of current node in XOR tree
 
void construct_Xor_Tree_Util(vector<int> current,
                             int start, int end, int x)
{
    // If there is one element in vector array, store it
    // in current node of XOR tree
    if (start == end) {
        xor_tree[x] = current[start];
        // cout<<xor_tree[x]<<" x";
        return;
    }
    // for left subtree
    int left = x * 2 + 1;
    // for right subtree
    int right = x * 2 + 2;
 
    // for getting the middle index from corner indexes.
    int mid = start + (end - start) / 2;
 
    // Build the left and the right subtrees by xor operation
    construct_Xor_Tree_Util(current, start, mid, left);
 
    construct_Xor_Tree_Util(current, mid + 1, end, right);
 
    // merge the left and right subtrees by
    // XOR operation
 
    xor_tree[x] = (xor_tree[left] ^ xor_tree[right]);
}
 
// Function to construct XOR tree from the given vector array.
// This function calls construct_Xor_Tree_Util() to fill the
// allocated memory of xor_tree vector array
void construct_Xor_Tree(vector<int> arr, int n)
{
    construct_Xor_Tree_Util(arr, 0, n - 1, 0);
}
 
// Driver Code
int main()
{
 
    // leaf nodes  of Perfect Binary Tree
    vector<int> leaf_nodes = { 40, 32, 12, 1, 4, 3, 2, 7 };
 
    int n = leaf_nodes.size();
 
    // Build the xor tree
    construct_Xor_Tree(leaf_nodes, n);
 
    // Height of xor tree
    int x = (int)(ceil(log2(n)));
 
    // Maximum size of xor tree
    int max_size = 2 * (int)pow(2, x) - 1;
 
    cout << "Nodes of the XOR Tree:\n";
    for (int i = 0; i < max_size; i++) {
        cout << xor_tree[i] << " ";
    }
 
    // Root node is at index 0 considering
    // 0-based indexing in XOR Tree
    int root = 0;
 
    // print value at root node
    cout << "\nRoot: " << xor_tree[root];
}

C




// C program to build xor tree by leaf nodes
// of perfect binary tree and root node value of tree
 
#include <math.h>
#include <stdio.h>
 
// maximum size for xor tree
#define maxsize 10005
 
// Allocating space to xor tree
int xortree[maxsize];
 
// A recursive function that constructs xor tree
// for  array[start.....end].
// x is index of current node in xor tree st
void construct_Xor_Tree_Util(int current[],
                             int start, int end, int x)
{
    // If there is one element in array, store it
    // in current node of xor tree and return
    if (start == end) {
        xortree[x] = current[start];
        // printf("%d ", xortree[x]);
        return;
    }
    // for left subtree
    int left = x * 2 + 1;
    // for right subtree
    int right = x * 2 + 2;
 
    // for getting the middle index
    // from corner indexes.
    int mid = start + (end - start) / 2;
 
    // Build the left and the right subtrees
    // by xor operation
    construct_Xor_Tree_Util(current, start, mid, left);
 
    construct_Xor_Tree_Util(current, mid + 1, end, right);
 
    // merge the left and right subtrees by
    // XOR operation
 
    xortree[x] = (xortree[left] ^ xortree[right]);
}
 
// Function to construct XOR tree from given array.
// This function calls construct_Xor_Tree_Util()
// to fill the allocated memory of xort  array
void construct_Xor_Tree(int arr[], int n)
{
    int i = 0;
    for (i = 0; i < maxsize; i++)
        xortree[i] = 0;
    construct_Xor_Tree_Util(arr, 0, n - 1, 0);
}
 
// Driver Code
int main()
{
 
    // leaf nodes of Binary Tree
    int leaf_nodes[] = { 40, 32, 12, 1, 4, 3, 2, 7 }, i = 0;
 
    int n = sizeof(leaf_nodes) / sizeof(leaf_nodes[0]);
 
    // Build the xor tree
    construct_Xor_Tree(leaf_nodes, n);
 
    // Height of xor tree
    int x = (int)(ceil(log2(n)));
 
    // Maximum size of xor tree
    int max_size = 2 * (int)pow(2, x) - 1;
 
    printf("Nodes of the XOR tree\n");
    for (i = 0; i < max_size; i++) {
        printf("%d ", xortree[i]);
    }
 
    // Root node is at index 0 considering
    // 0-based indexing in XOR Tree
    int root = 0;
 
    // print value at root node
    printf("\nRoot: %d", xortree[root]);
}

Java




// Java implementation of the above approach
class GFG
{
 
// Maximum size for xor tree
static int maxsize = 100005;
 
// Allocating space to xor tree
static int []xor_tree = new int[maxsize];
 
// A recursive function that constructs xor tree
// for vector array[start.....end].
// x is index of current node in XOR tree
 
static void construct_Xor_Tree_Util(int []current,
                            int start, int end, int x)
{
    // If there is one element in vector array, store it
    // in current node of XOR tree
    if (start == end)
    {
        xor_tree[x] = current[start];
         
        // System.out.print(xor_tree[x]+" x";
        return;
    }
     
    // for left subtree
    int left = x * 2 + 1;
     
    // for right subtree
    int right = x * 2 + 2;
 
    // for getting the middle index from corner indexes.
    int mid = start + (end - start) / 2;
 
    // Build the left and the right subtrees by xor operation
    construct_Xor_Tree_Util(current, start, mid, left);
 
    construct_Xor_Tree_Util(current, mid + 1, end, right);
 
    // merge the left and right subtrees by
    // XOR operation
 
    xor_tree[x] = (xor_tree[left] ^ xor_tree[right]);
}
 
// Function to conXOR tree from the given vector array.
// This function calls construct_Xor_Tree_Util() to fill the
// allocated memory of xor_tree vector array
static void construct_Xor_Tree(int []arr, int n)
{
    construct_Xor_Tree_Util(arr, 0, n - 1, 0);
}
 
// Driver Code
public static void main(String[] args)
{
 
    // leaf nodes of Perfect Binary Tree
    int []leaf_nodes = { 40, 32, 12, 1, 4, 3, 2, 7 };
 
    int n = leaf_nodes.length;
 
    // Build the xor tree
    construct_Xor_Tree(leaf_nodes, n);
 
    // Height of xor tree
    int x = (int)(Math.ceil(Math.log(n)));
 
    // Maximum size of xor tree
    int max_size = 2 * (int)Math.pow(2, x) - 1;
 
    System.out.print("Nodes of the XOR Tree:\n");
    for (int i = 0; i < max_size; i++)
    {
        System.out.print(xor_tree[i]+ " ");
    }
 
    // Root node is at index 0 considering
    // 0-based indexing in XOR Tree
    int root = 0;
 
    // print value at root node
    System.out.print("\nRoot: " + xor_tree[root]);
}
}
 
// This code is contributed by PrinciRaj1992

Python




# Python3 implementation of the above approach
from math import ceil,log
 
# Maximum size for xor tree
maxsize = 100005
 
# Allocating space to xor tree
xor_tree = [0] * maxsize
 
# A recursive function that constructs xor tree
# for vector array[start.....end].
# x is index of current node in XOR tree
def construct_Xor_Tree_Util(current, start, end, x):
     
    # If there is one element in vector array, store it
    # in current node of XOR tree
    if (start == end):
        xor_tree[x] = current[start]
         
        # cout<<xor_tree[x]<<" x"
        return
     
    # for left subtree
    left = x * 2 + 1
     
    # for right subtree
    right = x * 2 + 2
 
    # for getting the middle index from corner indexes.
    mid = start + (end - start) // 2
 
    # Build the left and the right subtrees by xor operation
    construct_Xor_Tree_Util(current, start, mid, left)
 
    construct_Xor_Tree_Util(current, mid + 1, end, right)
 
    # merge the left and right subtrees by
    # XOR operation
    xor_tree[x] = (xor_tree[left] ^ xor_tree[right])
 
# Function to construct XOR tree from the given vector array.
# This function calls construct_Xor_Tree_Util() to fill the
# allocated memory of xor_tree vector array
def construct_Xor_Tree(arr, n):
    construct_Xor_Tree_Util(arr, 0, n - 1, 0)
 
# Driver Code
if __name__ == '__main__':
     
    # leaf nodes of Perfect Binary Tree
    leaf_nodes = [40, 32, 12, 1, 4, 3, 2, 7]
 
    n = len(leaf_nodes)
 
    # Build the xor tree
    construct_Xor_Tree(leaf_nodes, n)
 
    # Height of xor tree
    x = (ceil(log(n, 2)))
 
    # Maximum size of xor tree
    max_size = 2 * pow(2, x) - 1
 
    print("Nodes of the XOR Tree:")
    for i in range(max_size):
        print(xor_tree[i], end=" ")
 
    # Root node is at index 0 considering
    # 0-based indexing in XOR Tree
    root = 0
 
    # prevalue at root node
    print("\nRoot: ", xor_tree[root])
     
    # This code is contributed by mohit kumar 29

C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Maximum size for xor tree
static int maxsize = 100005;
 
// Allocating space to xor tree
static int []xor_tree = new int[maxsize];
 
// A recursive function that constructs xor tree
// for vector array[start.....end].
// x is index of current node in XOR tree
static void construct_Xor_Tree_Util(int []current,
                            int start, int end, int x)
{
    // If there is one element in vector array, store it
    // in current node of XOR tree
    if (start == end)
    {
        xor_tree[x] = current[start];
         
        // Console.Write(xor_tree[x]+" x";
        return;
    }
     
    // for left subtree
    int left = x * 2 + 1;
     
    // for right subtree
    int right = x * 2 + 2;
 
    // for getting the middle index from corner indexes.
    int mid = start + (end - start) / 2;
 
    // Build the left and the right subtrees by xor operation
    construct_Xor_Tree_Util(current, start, mid, left);
 
    construct_Xor_Tree_Util(current, mid + 1, end, right);
 
    // merge the left and right subtrees by
    // XOR operation
    xor_tree[x] = (xor_tree[left] ^ xor_tree[right]);
}
 
// Function to conXOR tree from the given vector array.
// This function calls construct_Xor_Tree_Util() to fill the
// allocated memory of xor_tree vector array
static void construct_Xor_Tree(int []arr, int n)
{
    construct_Xor_Tree_Util(arr, 0, n - 1, 0);
}
 
// Driver Code
public static void Main(String[] args)
{
 
    // leaf nodes of Perfect Binary Tree
    int []leaf_nodes = { 40, 32, 12, 1, 4, 3, 2, 7 };
 
    int n = leaf_nodes.Length;
 
    // Build the xor tree
    construct_Xor_Tree(leaf_nodes, n);
 
    // Height of xor tree
    int x = (int)(Math.Ceiling(Math.Log(n)));
 
    // Maximum size of xor tree
    int max_size = 2 * (int)Math.Pow(2, x) - 1;
 
    Console.Write("Nodes of the XOR Tree:\n");
    for (int i = 0; i < max_size; i++)
    {
        Console.Write(xor_tree[i] + " ");
    }
 
    // Root node is at index 0 considering
    // 0-based indexing in XOR Tree
    int root = 0;
 
    // print value at root node
    Console.Write("\nRoot: " + xor_tree[root]);
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Maximum size for xor tree
var maxsize = 100005;
 
// Allocating space to xor tree
var xor_tree = Array(maxsize);
 
// A recursive function that constructs xor tree
// for vector array[start.....end].
// x is index of current node in XOR tree
 
function construct_Xor_Tree_Util(current, start, end, x)
{
    // If there is one element in vector array, store it
    // in current node of XOR tree
    if (start == end) {
        xor_tree[x] = current[start];
        // cout<<xor_tree[x]<<" x";
        return;
    }
    // for left subtree
    var left = x * 2 + 1;
    // for right subtree
    var right = x * 2 + 2;
 
    // for getting the middle index from corner indexes.
    var mid = start + parseInt((end - start) / 2);
 
    // Build the left and the right subtrees by xor operation
    construct_Xor_Tree_Util(current, start, mid, left);
 
    construct_Xor_Tree_Util(current, mid + 1, end, right);
 
    // merge the left and right subtrees by
    // XOR operation
 
    xor_tree[x] = (xor_tree[left] ^ xor_tree[right]);
}
 
// Function to construct XOR tree from the given vector array.
// This function calls construct_Xor_Tree_Util() to fill the
// allocated memory of xor_tree vector array
function construct_Xor_Tree(arr, n)
{
    construct_Xor_Tree_Util(arr, 0, n - 1, 0);
}
 
// Driver Code
// leaf nodes  of Perfect Binary Tree
var leaf_nodes = [40, 32, 12, 1, 4, 3, 2, 7 ];
var n = leaf_nodes.length;
// Build the xor tree
construct_Xor_Tree(leaf_nodes, n);
// Height of xor tree
var x = (Math.ceil(Math.log2(n)));
// Maximum size of xor tree
var max_size = 2 * Math.pow(2, x) - 1;
document.write( "Nodes of the XOR Tree:<br>");
for (var i = 0; i < max_size; i++) {
    document.write( xor_tree[i] + " ");
}
// Root node is at index 0 considering
// 0-based indexing in XOR Tree
var root = 0;
// print value at root node
document.write( "<br>Root: " + xor_tree[root]);
 
 
</script>
Output: 
Nodes of the XOR Tree:
7 5 2 8 13 7 5 40 32 12 1 4 3 2 7 
Root: 7

 

Time Complexity: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :