Skip to content
Related Articles

Related Articles

Improve Article
Construct the Rooted tree by using start and finish time of its DFS traversal
  • Last Updated : 06 Jun, 2021

Given start and finish times of DFS traversal of N vertices that are available in a Rooted tree, the task is to construct the tree (Print the Parent of each node). 
Parent of the root node is 0.
Examples: 
 

Input: Start[] = {2, 4, 1, 0, 3}, End[] = {3, 5, 4, 5, 4}
Output: 3 4 4 0 3
Given Tree is -:
                      4(0, 5)
                    /   \
              (1, 4)3     2(4, 5)
                 /  \    
           (2, 3)1    5(3, 4)
The root will always have start time = 0
processing a node takes 1 unit time but backtracking 
does not consume time, so the finishing time 
of two nodes can be the same.

Input: Start[] = {4, 3, 2, 1, 0}, End[] = {5, 5, 3, 3, 5}
Output: 2 5 4 5 0

 

Approach: 
 

  • Root of the tree is the vertex whose starting time is zero.
  • Now, it is sufficient to find the descendants of a vertex, this way we can find the parent of every vertex.
  • Define Identity[i] as the index of the vertex with starting equal to i.
  • As Start[v] and End[v] are starting and ending time of vertex v.The first child of v is Identity[Start[v]+1] and 
    the (i+1)th is Identity[End[chv[i]]] where chv[i] is the ith child of v.
  • Traverse down in DFS manner and update the parent of each node.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int N;
 
// Function to find the parent of each node.
vector<int> Restore_Tree(int Start[], int End[])
{
 
    // Storing index of vertex with starting
    // time Equal to i
    vector<int> Identity(N,0);
 
 
    for (int i = 0; i < N; i++)
    {
        Identity[Start[i]] = i;
    }
 
    // Parent array
    vector<int> parent(N,-1);
    int curr_parent = Identity[0];
 
    for (int j = 1; j < N; j++)
    {
 
        // Find the vertex with starting time j
        int child = Identity[j];
 
        // If end time of this child is greater than
        // (start time + 1), then we traverse down and
        // store curr_parent as the parent of child
        if (End[child] - j > 1)
        {
            parent[child] = curr_parent;
            curr_parent = child;
        }
 
        // Find the parent of current vertex
        // over iterating on the finish time
        else
            parent[child] = curr_parent;
 
        // Backtracking takes zero time
        while (End[child]== End[parent[child]])
        {
            child = parent[child];
            curr_parent = parent[child];
            if (curr_parent == Identity[0])
                break;
        }
    }
    for (int i = 0; i < N; i++)
        parent[i] += 1;
 
    // Return the parent array
    return parent;
}
 
// Driver Code
int main()
{
    N = 5;
 
    // Start and End time of DFS
    int Start[] = {2, 4, 1, 0, 3};
    int End[] = {3, 5, 4, 5, 4};
    vector<int> a = Restore_Tree(Start, End);
 
    for(int ans:a)
        cout << ans << " ";
 
    return 0;
}
 
// This code is contributed by mohit kumar 29

Java




// Java implementation of above approach
import java.util.Arrays;
 
class GFG
{
     
static int N = 5;
 
// Function to find the parent of each node.
static int[] Restore_Tree(int []S, int []End)
{
 
    // Storing index of vertex with starting
    // time Equal to i
    int []Identity = new int[N];
 
    for(int i = 0; i < N; i++)
        Identity[S[i]] = i;
 
    // Parent array
    int []parent = new int[N];
    Arrays.fill(parent,-1);
    int curr_parent = Identity[0];
     
    for(int j = 1; j < N; j++)
    {
 
        // Find the vertex with starting time j
        int child = Identity[j];
 
        // If end time of this child is greater than
        // (start time + 1), then we traverse down and
        // store curr_parent as the parent of child
        if(End[child] - j > 1)
        {
            parent[child] = curr_parent;
            curr_parent = child;
        }
         
        // Find the parent of current vertex
        // over iterating on the finish time
        else{
            parent[child] = curr_parent;
 
            // Backtracking takes zero time
            while(parent[child]>-1 && End[child] == End[parent[child]])
            {
                child = parent[child];
                curr_parent = parent[child];
                if(curr_parent == Identity[0])
                    break;
            }
        }
    }
    for(int i = 0; i < N; i++)
        parent[i] += 1;
 
    // Return the parent array
    return parent;
}
 
// Driver Code
public static void main(String[] args)
{
    // Start and End time of DFS
    int []Start = {2, 4, 1, 0, 3};
    int []End = {3, 5, 4, 5, 4};
    int ans[] =Restore_Tree(Start, End);
    for(int a:ans)
        System.out.print(a + " ");
}
}
 
// This code has been contributed by 29AjayKumar

Python




# Python implementation of the above approach
  
# Function to find the parent of each node.
def Restore_Tree(S, E):
  
    # Storing index of vertex with starting
    # time Equal to i
    Identity = N*[0
 
    for i in range(N):
        Identity[Start[i]] = i
  
    # Parent array
    parent = N*[-1]
    curr_parent = Identity[0]
     
    for j in range(1, N):
 
        # Find the vertex with starting time j
        child = Identity[j]
 
        # If end time of this child is greater than
        # (start time + 1), then we traverse down and
        # store curr_parent as the parent of child
        if End[child] - j > 1:
            parent[child] = curr_parent
            curr_parent = child
 
        # Find the parent of current vertex
        # over iterating on the finish time
        else:    
            parent[child] = curr_parent
 
            # Backtracking takes zero time
            while End[child]== End[parent[child]]:
                child = parent[child]
                curr_parent = parent[child]
                if curr_parent == Identity[0]:
                    break
    for i in range(N):
        parent[i]+= 1
  
    # Return the parent array
    return parent
  
# Driver Code
if __name__=="__main__":
    N = 5
  
    # Start and End time of DFS
    Start = [2, 4, 1, 0, 3]
    End = [3, 5, 4, 5, 4]
    print(*Restore_Tree(Start, End))

C#




// C# implementation of the approach
using System;
     
class GFG
{
     
static int N = 5;
 
// Function to find the parent of each node.
static int[] Restore_Tree(int []S, int []End)
{
 
    // Storing index of vertex with starting
    // time Equal to i
    int []Identity = new int[N];
 
    for(int i = 0; i < N; i++)
        Identity[S[i]] = i;
 
    // Parent array
    int []parent = new int[N];
    for(int i = 0; i < N; i++)
        parent[i]=-1;
    int curr_parent = Identity[0];
     
    for(int j = 1; j < N; j++)
    {
 
        // Find the vertex with starting time j
        int child = Identity[j];
 
        // If end time of this child is greater than
        // (start time + 1), then we traverse down and
        // store curr_parent as the parent of child
        if(End[child] - j > 1)
        {
            parent[child] = curr_parent;
            curr_parent = child;
        }
         
        // Find the parent of current vertex
        // over iterating on the finish time
        else
        {
            parent[child] = curr_parent;
 
            // Backtracking takes zero time
            while(parent[child]>-1 && End[child] == End[parent[child]])
            {
                child = parent[child];
                curr_parent = parent[child];
                if(curr_parent == Identity[0])
                    break;
            }
        }
    }
    for(int i = 0; i < N; i++)
        parent[i] += 1;
 
    // Return the parent array
    return parent;
}
 
// Driver Code
public static void Main(String[] args)
{
    // Start and End time of DFS
    int []Start = {2, 4, 1, 0, 3};
    int []End = {3, 5, 4, 5, 4};
    int []ans =Restore_Tree(Start, End);
    foreach(int a in ans)
        Console.Write(a + " ");
}
}
 
/* This code contributed by PrinciRaj1992 */
Output: 



3 4 4 0 3

 

Time Complexity : O(N) 
where N is the number of nodes in the tree.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :