Given an array A[] consisting of N integers and first element of the array B[] as K, the task is to construct the array B[] from A[] such that for any index i, A[i] is the Bitwise XOR of all the array elements of B[] except B[i].
Examples:
Input: A[] = {13, 14, 10, 6}, K = 2
Output: 2 1 5 9
Explanation:
For any index i, A[i] is the Bitwise XOR of all elements of B[] except B[i].
- B[1] ^ B[2] ^ B[3] = 1 ^ 5 ^ 9 = 13 = A[0]
- B[0] ^ B[2] ^ B[3] = 2 ^ 5 ^ 9 = 14 = A[1]
- B[0] ^ B[1] ^ B[3] = 2 ^ 1 ^ 9 = 10 = A[2]
- B[0] ^ B[1] ^ B[2] = 2 ^ 1 ^ 5 = 6 = A[3]
Input: A[] = {3, 5, 0, 2, 4}, K = 2
Output: 2 4 1 3 5
Approach: The idea is based on the observation that Bitwise XOR of the same value calculated even number of times is 0.
For any index i,
A[i] = B[0] ^ B[1] ^ … B[i-1] ^ B[i+1] ^ … B[n-1]
Therefore, XOR of all elements of B[], totalXor = B[0] ^ B[1] ^ … B[i – 1] ^ B[i] ^ B[i + 1] ^ … ^ B[N – 1].
Therefore, B[i] = totalXor ^ A[i]. (Since every element occurs twice except B[i])
Follow the below steps to solve the problem:
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void constructArray( int A[], int N,
int K)
{
int B[N];
int totalXOR = A[0] ^ K;
for ( int i = 0; i < N; i++)
B[i] = totalXOR ^ A[i];
for ( int i = 0; i < N; i++) {
cout << B[i] << " " ;
}
}
int main()
{
int A[] = { 13, 14, 10, 6 }, K = 2;
int N = sizeof (A) / sizeof (A[0]);
constructArray(A, N, K);
return 0;
}
|
Java
class GFG{
static void constructArray( int A[], int N,
int K)
{
int B[] = new int [N];
int totalXOR = A[ 0 ] ^ K;
for ( int i = 0 ; i < N; i++)
B[i] = totalXOR ^ A[i];
for ( int i = 0 ; i < N; i++)
{
System.out.print(B[i] + " " );
}
}
public static void main(String[] args)
{
int A[] = { 13 , 14 , 10 , 6 }, K = 2 ;
int N = A.length;
constructArray(A, N, K);
}
}
|
Python3
def constructArray(A, N, K):
B = [ 0 ] * N;
totalXOR = A[ 0 ] ^ K;
for i in range (N):
B[i] = totalXOR ^ A[i];
for i in range (N):
print (B[i], end = " " );
if __name__ = = '__main__' :
A = [ 13 , 14 , 10 , 6 ];
K = 2 ;
N = len (A);
constructArray(A, N, K);
|
C#
using System;
using System.Collections;
class GFG {
static void constructArray( int [] A, int N,
int K)
{
int [] B = new int [N];
int totalXOR = A[0] ^ K;
for ( int i = 0; i < N; i++)
B[i] = totalXOR ^ A[i];
for ( int i = 0; i < N; i++)
{
Console.Write(B[i] + " " );
}
}
static void Main() {
int [] A = { 13, 14, 10, 6 };
int K = 2;
int N = A.Length;
constructArray(A, N, K);
}
}
|
Javascript
<script>
function constructArray(A, N, K)
{
let B = new Array(N);
let totalXOR = A[0] ^ K;
for (let i = 0; i < N; i++)
B[i] = totalXOR ^ A[i];
for (let i = 0; i < N; i++) {
document.write(B[i] + " " );
}
}
let A = [ 13, 14, 10, 6 ], K = 2;
let N = A.length;
constructArray(A, N, K);
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
11 Jun, 2021
Like Article
Save Article