Construct a square Matrix whose parity of diagonal sum is same as size of matrix

Given an integer N representing the size of the matrix, the task is to construct a square matrix N * N which have an element from 1 to N2 such that the parity of the sum of its diagonals is equal to the parity of integer N.

Examples:

Input: N = 4
Output:
1   2   3   4 
8   7   6   5
9  10  11 12
16 15 14 13
Explanation:
Sum of diagonal = 32 and 36 and integer N = 4, all the numbers are even that is same parity.

Input: N = 3
Output:
1 2 3 
6 5 4
7 8 9
Explanation:
Sum of diagonal = 15 and integer N = 3, all the numbers are odd that is same parity.

Approach: The idea is to observe that on filling the elements in the matrix in an alternative fashion the parity of N and the sum of diagonals is the same. Start the counter from 1 and then fill the first row from 0 to N – 1 in increasing order, then fill the second row from index N – 1 to 0, and so on. Keep filling each element from value 1 to N2 in this alternate fashion to get the required matrix.
Below is the implementation of the above approach:
 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to construct a N * N
// matrix based on the given condition
void createMatrix(int N)
{
    // Matrix with given sizM
    int M[N][N];
 
    // Counter to insert elements
    // from 1 to N * N
    int count = 1;
    for (int i = 0; i < N; i++) {
 
        // Check if it is first row
        // or odd row of the matrix
        if (i % 2 == 0) {
 
            for (int j = 0; j < N; j++) {
                M[i][j] = count;
                count++;
            }
        }
        else
        {
            // Insert elements from
            // right to left
            for (int j = N - 1;j >= 0; j--){
                M[i][j] = count;
                count += 1;
            }
        }
    }
 
    // Print the matrix
    for (int i = 0; i < N; i++) {
 
        // Traverse column
        for (int j = 0; j < N; j++) {
            cout << M[i][j] << " ";
        }
        cout << endl;
    }
}
 
// Driver Code
int main()
{
    // Given size of matrix N
    int N = 3;
 
    // Function Call
    createMatrix(N);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
class GFG{
  
// Function to construct a N * N
// matrix based on the given condition
static void createMatrix(int N)
{
    // Matrix with given sizM
    int M[][] = new int[N][N];
  
    // Counter to insert elements
    // from 1 to N * N
    int count = 1;
    for (int i = 0; i < N; i++)
    {
  
        // Check if it is first row
        // or odd row of the matrix
        if (i % 2 == 0)
        {
  
            for (int j = 0; j < N; j++)
            {
                M[i][j] = count;
                count++;
            }
        }
        else
        {
            // Insert elements from
            // right to left
            for(int j = N - 1; j >= 0; j--){
                M[i][j] = count;
                count += 1 ;
            }
        }
    }
  
    // Print the matrix
    for (int i = 0; i < N; i++)
    {
  
        // Traverse column
        for (int j = 0; j < N; j++)
        {
            System.out.print(M[i][j] + " ");
        }
        System.out.println();
    }
}
  
// Driver Code
public static void main(String[] args)
{
    // Given size of matrix N
    int N = 3;
  
    // Function Call
    createMatrix(N);
}
}
 
// This code is contributed by Ritik Bansal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to construct a N * N
# matrix based on the given condition
def createMatrix(N):
     
    # Matrix with given size
    M = [[0] * N for i in range(N)]
 
    # Counter to insert elements
    # from 1 to N * N
    count = 1
     
    for i in range(N):
 
        # Check if it is first row
        # or odd row of the matrix
        if (i % 2 == 0):
            for j in range(N):
 
                # Insert elements from
                # left to right
                M[i][j] = count
                count += 1
 
        # Condition if it is second
        # row or even row
        else:
 
            # Insert elements from
            # right to left
            for j in range(N - 1, -1, -1):
                M[i][j] = count
                count += 1
 
    # Print the matrix
    for i in range(N):
 
        # Traverse column
        for j in range(N):
            print(M[i][j], end = " ")
 
        print()
 
# Driver Code
if __name__ == '__main__':
     
    # Given size of matrix N
    N = 3
 
    # Function call
    createMatrix(N)
 
# This code is contributed by mohit kumar 29
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for
// the above approach
using System;
class GFG{
  
// Function to construct a N * N
// matrix based on the given condition
static void createMatrix(int N)
{
  // Matrix with given sizM
  int[,] M = new int[N, N];
 
  // Counter to insert elements
  // from 1 to N * N
  int count = 1;
  for (int i = 0; i < N; i++)
  {
    // Check if it is first row
    // or odd row of the matrix
    if (i % 2 == 0)
    {
 
      for (int j = 0; j < N; j++)
      {
        M[i, j] = count;
        count++;
      }
    }
    else
    {
      // Insert elements from
      // right to left
      for(int j = N - 1; j >= 0; j--)
      {
        M[i, j] = count;
        count += 1;
      }
    }
  }
 
  // Print the matrix
  for (int i = 0; i < N; i++)
  {
    // Traverse column
    for (int j = 0; j < N; j++)
    {
      Console.Write(M[i, j] + " ");
    }
    Console.WriteLine();
  }
}
  
// Driver Code
public static void Main()
{
  // Given size of matrix N
  int N = 3;
 
  // Function Call
  createMatrix(N);
}
}
 
// This code is contributed by Chitranayal
chevron_right

Output: 
1 2 3 
6 5 4 
7 8 9



 

Time Complexity: O(N*N) 
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :