Given an integer N representing the size of the matrix, the task is to construct a square matrix N * N which have an element from 1 to N2 such that the parity of the sum of its diagonals is equal to the parity of integer N.
Examples:
Input: N = 4
Output:
1 2 3 4
8 7 6 5
9 10 11 12
16 15 14 13
Explanation:
Sum of diagonal = 32 and 36 and integer N = 4, all the numbers are even that is same parity.
Input: N = 3
Output:
1 2 3
6 5 4
7 8 9
Explanation:
Sum of diagonal = 15 and integer N = 3, all the numbers are odd that is same parity.
Approach: The idea is to observe that on filling the elements in the matrix in an alternative fashion the parity of N and the sum of diagonals is the same. Start the counter from 1 and then fill the first row from 0 to N – 1 in increasing order, then fill the second row from index N – 1 to 0, and so on. Keep filling each element from value 1 to N2 in this alternate fashion to get the required matrix.
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
void createMatrix( int N)
{
int M[N][N];
int count = 1;
for ( int i = 0; i < N; i++) {
if (i % 2 == 0) {
for ( int j = 0; j < N; j++) {
M[i][j] = count;
count++;
}
}
else
{
for ( int j = N - 1;j >= 0; j--){
M[i][j] = count;
count += 1;
}
}
}
for ( int i = 0; i < N; i++) {
for ( int j = 0; j < N; j++) {
cout << M[i][j] << " " ;
}
cout << endl;
}
}
int main()
{
int N = 3;
createMatrix(N);
return 0;
}
|
Java
class GFG{
static void createMatrix( int N)
{
int M[][] = new int [N][N];
int count = 1 ;
for ( int i = 0 ; i < N; i++)
{
if (i % 2 == 0 )
{
for ( int j = 0 ; j < N; j++)
{
M[i][j] = count;
count++;
}
}
else
{
for ( int j = N - 1 ; j >= 0 ; j--){
M[i][j] = count;
count += 1 ;
}
}
}
for ( int i = 0 ; i < N; i++)
{
for ( int j = 0 ; j < N; j++)
{
System.out.print(M[i][j] + " " );
}
System.out.println();
}
}
public static void main(String[] args)
{
int N = 3 ;
createMatrix(N);
}
}
|
Python3
def createMatrix(N):
M = [[ 0 ] * N for i in range (N)]
count = 1
for i in range (N):
if (i % 2 = = 0 ):
for j in range (N):
M[i][j] = count
count + = 1
else :
for j in range (N - 1 , - 1 , - 1 ):
M[i][j] = count
count + = 1
for i in range (N):
for j in range (N):
print (M[i][j], end = " " )
print ()
if __name__ = = '__main__' :
N = 3
createMatrix(N)
|
C#
using System;
class GFG{
static void createMatrix( int N)
{
int [,] M = new int [N, N];
int count = 1;
for ( int i = 0; i < N; i++)
{
if (i % 2 == 0)
{
for ( int j = 0; j < N; j++)
{
M[i, j] = count;
count++;
}
}
else
{
for ( int j = N - 1; j >= 0; j--)
{
M[i, j] = count;
count += 1;
}
}
}
for ( int i = 0; i < N; i++)
{
for ( int j = 0; j < N; j++)
{
Console.Write(M[i, j] + " " );
}
Console.WriteLine();
}
}
public static void Main()
{
int N = 3;
createMatrix(N);
}
}
|
Javascript
<script>
function createMatrix(N)
{
var M = Array(N).fill(0).map(x => Array(N).fill(0));
var count = 1;
for (i = 0; i < N; i++)
{
if (i % 2 == 0)
{
for (j = 0; j < N; j++)
{
M[i][j] = count;
count++;
}
}
else
{
for (j = N - 1; j >= 0; j--){
M[i][j] = count;
count += 1 ;
}
}
}
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
document.write(M[i][j] + " " );
}
document.write( "<br>" );
}
}
var N = 3;
createMatrix(N);
</script>
|
Output:
1 2 3
6 5 4
7 8 9
Time Complexity: O(N*N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
31 Jan, 2022
Like Article
Save Article