Given postorder traversal of a binary search tree, construct the BST.
For example, if the given traversal is {1, 7, 5, 50, 40, 10}, then following tree should be constructed and root of the tree should be returned.
10
/ \
5 40
/ \ \
1 7 50
Method 1 ( O(n^2) time complexity ):
The last element of postorder traversal is always root. We first construct the root. Then we find the index of last element which is smaller than root. Let the index be ‘i’. The values between 0 and ‘i’ are part of left subtree, and the values between ‘i+1’ and ‘n-2’ are part of right subtree. Divide given post[] at index “i” and recur for left and right sub-trees.
For example in {1, 7, 5, 50, 40, 10}, 10 is the last element, so we make it root. Now we look for the last element smaller than 10, we find 5. So we know the structure of BST is as following.
10
/ \
/ \
{1, 7, 5} {50, 40}
We recursively follow above steps for subarrays {1, 7, 5} and {40, 50}, and get the complete tree.
Method 2 ( O(n) time complexity ):
The trick is to set a range {min .. max} for every node. Initialize the range as {INT_MIN .. INT_MAX}. The last node will definitely be in range, so create root node. To construct the left subtree, set the range as {INT_MIN …root->data}. If a values is in the range {INT_MIN .. root->data}, the values is part of left subtree. To construct the right subtree, set the range as {root->data .. INT_MAX}.
Following code is used to generate the exact Binary Search Tree of a given post order traversal.
C++
#include <bits/stdc++.h>
using namespace std;
struct node
{
int data;
struct node *left, *right;
};
struct node* newNode ( int data)
{
struct node* temp =
( struct node *) malloc ( sizeof ( struct node));
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
struct node* constructTreeUtil( int post[], int * postIndex,
int key, int min, int max,
int size)
{
if (*postIndex < 0)
return NULL;
struct node* root = NULL;
if (key > min && key < max)
{
root = newNode(key);
*postIndex = *postIndex - 1;
if (*postIndex >= 0)
{
root->right = constructTreeUtil(post, postIndex,
post[*postIndex],
key, max, size );
root->left = constructTreeUtil(post, postIndex,
post[*postIndex],
min, key, size );
}
}
return root;
}
struct node *constructTree ( int post[],
int size)
{
int postIndex = size-1;
return constructTreeUtil(post, &postIndex,
post[postIndex],
INT_MIN, INT_MAX, size);
}
void printInorder ( struct node* node)
{
if (node == NULL)
return ;
printInorder(node->left);
cout << node->data << " " ;
printInorder(node->right);
}
int main ()
{
int post[] = {1, 7, 5, 50, 40, 10};
int size = sizeof (post) / sizeof (post[0]);
struct node *root = constructTree(post, size);
cout << "Inorder traversal of "
<< "the constructed tree: \n" ;
printInorder(root);
return 0;
}
|
C
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
struct node
{
int data;
struct node *left, *right;
};
struct node* newNode ( int data)
{
struct node* temp =
( struct node *) malloc ( sizeof ( struct node));
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
struct node* constructTreeUtil( int post[], int * postIndex,
int key, int min, int max, int size)
{
if (*postIndex < 0)
return NULL;
struct node* root = NULL;
if (key > min && key < max)
{
root = newNode(key);
*postIndex = *postIndex - 1;
if (*postIndex >= 0)
{
root->right = constructTreeUtil(post, postIndex, post[*postIndex],
key, max, size );
root->left = constructTreeUtil(post, postIndex, post[*postIndex],
min, key, size );
}
}
return root;
}
struct node *constructTree ( int post[], int size)
{
int postIndex = size-1;
return constructTreeUtil(post, &postIndex, post[postIndex],
INT_MIN, INT_MAX, size);
}
void printInorder ( struct node* node)
{
if (node == NULL)
return ;
printInorder(node->left);
printf ( "%d " , node->data);
printInorder(node->right);
}
int main ()
{
int post[] = {1, 7, 5, 50, 40, 10};
int size = sizeof (post) / sizeof (post[0]);
struct node *root = constructTree(post, size);
printf ( "Inorder traversal of the constructed tree: \n" );
printInorder(root);
return 0;
}
|
Java
class Node
{
int data;
Node left, right;
Node( int data)
{
this .data = data;
left = right = null ;
}
}
class Index
{
int postindex = 0 ;
}
class BinaryTree
{
Node constructTreeUtil( int post[], Index postIndex,
int key, int min, int max, int size)
{
if (postIndex.postindex < 0 )
return null ;
Node root = null ;
if (key > min && key < max)
{
root = new Node(key);
postIndex.postindex = postIndex.postindex - 1 ;
if (postIndex.postindex >= 0 )
{
root.right = constructTreeUtil(post, postIndex,
post[postIndex.postindex],key, max, size);
root.left = constructTreeUtil(post, postIndex,
post[postIndex.postindex],min, key, size);
}
}
return root;
}
Node constructTree( int post[], int size)
{
Index index = new Index();
index.postindex = size - 1 ;
return constructTreeUtil(post, index, post[index.postindex],
Integer.MIN_VALUE, Integer.MAX_VALUE, size);
}
void printInorder(Node node)
{
if (node == null )
return ;
printInorder(node.left);
System.out.print(node.data + " " );
printInorder(node.right);
}
public static void main(String[] args)
{
BinaryTree tree = new BinaryTree();
int post[] = new int []{ 1 , 7 , 5 , 50 , 40 , 10 };
int size = post.length;
Node root = tree.constructTree(post, size);
System.out.println( "Inorder traversal of the constructed tree:" );
tree.printInorder(root);
}
}
|
Python3
INT_MIN = - 2 * * 31
INT_MAX = 2 * * 31
class newNode:
def __init__( self , data):
self .data = data
self .left = self .right = None
def constructTreeUtil(post, postIndex,
key, min , max , size):
if (postIndex[ 0 ] < 0 ):
return None
root = None
if (key > min and key < max ) :
root = newNode(key)
postIndex[ 0 ] = postIndex[ 0 ] - 1
if (postIndex[ 0 ] > = 0 ) :
root.right = constructTreeUtil(post, postIndex,
post[postIndex[ 0 ]],
key, max , size )
root.left = constructTreeUtil(post, postIndex,
post[postIndex[ 0 ]],
min , key, size )
return root
def constructTree (post, size) :
postIndex = [size - 1 ]
return constructTreeUtil(post, postIndex,
post[postIndex[ 0 ]],
INT_MIN, INT_MAX, size)
def printInorder (node) :
if (node = = None ) :
return
printInorder(node.left)
print (node.data, end = " " )
printInorder(node.right)
if __name__ = = '__main__' :
post = [ 1 , 7 , 5 , 50 , 40 , 10 ]
size = len (post)
root = constructTree(post, size)
print ( "Inorder traversal of the" ,
"constructed tree: " )
printInorder(root)
|
C#
using System;
class Node
{
public int data;
public Node left, right;
public Node( int data)
{
this .data = data;
left = right = null ;
}
}
class Index
{
public int postindex = 0;
}
public class BinaryTree
{
Node constructTreeUtil( int []post, Index postIndex,
int key, int min, int max, int size)
{
if (postIndex.postindex < 0)
return null ;
Node root = null ;
if (key > min && key < max)
{
root = new Node(key);
postIndex.postindex = postIndex.postindex - 1;
if (postIndex.postindex >= 0)
{
root.right = constructTreeUtil(post, postIndex,
post[postIndex.postindex], key, max, size);
root.left = constructTreeUtil(post, postIndex,
post[postIndex.postindex],min, key, size);
}
}
return root;
}
Node constructTree( int []post, int size)
{
Index index = new Index();
index.postindex = size - 1;
return constructTreeUtil(post, index,
post[index.postindex],
int .MinValue, int .MaxValue, size);
}
void printInorder(Node node)
{
if (node == null )
return ;
printInorder(node.left);
Console.Write(node.data + " " );
printInorder(node.right);
}
public static void Main(String[] args)
{
BinaryTree tree = new BinaryTree();
int []post = new int []{1, 7, 5, 50, 40, 10};
int size = post.Length;
Node root = tree.constructTree(post, size);
Console.WriteLine( "Inorder traversal of" +
"the constructed tree:" );
tree.printInorder(root);
}
}
|
Javascript
<script>
class Node {
constructor(data) {
this .data = data;
this .left = null ;
this .right = null ;
}
}
class Index {
constructor() {
this .postindex = 0;
}
}
class BinaryTree {
constructTreeUtil(post, postIndex, key, min, max, size) {
if (postIndex.postindex < 0) return null ;
var root = null ;
if (key > min && key < max) {
root = new Node(key);
postIndex.postindex = postIndex.postindex - 1;
if (postIndex.postindex >= 0) {
root.right = this .constructTreeUtil(
post,
postIndex,
post[postIndex.postindex],
key,
max,
size
);
root.left = this .constructTreeUtil(
post,
postIndex,
post[postIndex.postindex],
min,
key,
size
);
}
}
return root;
}
constructTree(post, size) {
var index = new Index();
index.postindex = size - 1;
return this .constructTreeUtil(
post,
index,
post[index.postindex],
-2147483648,
2147483647,
size
);
}
printInorder(node) {
if (node == null ) return ;
this .printInorder(node.left);
document.write(node.data + " " );
this .printInorder(node.right);
}
}
var tree = new BinaryTree();
var post = [1, 7, 5, 50, 40, 10];
var size = post.length;
var root = tree.constructTree(post, size);
document.write( "Inorder traversal of " +
"the constructed tree: <br>" );
tree.printInorder(root);
</script>
|
Output
Inorder traversal of the constructed tree:
1 5 7 10 40 50
Time Complexity: O(n)
Space Complexity: O(h), where h is the height of the BST
Note that the output to the program will always be a sorted sequence as we are printing the inorder traversal of a Binary Search Tree.
If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
20 Feb, 2023
Like Article
Save Article