# Construct a Binary Search Tree from given postorder

Given postorder traversal of a binary search tree, construct the BST.

For example, if the given traversal is {1, 7, 5, 50, 40, 10}, then following tree should be constructed and root of the tree should be returned.

10
/   \
5     40
/  \      \
1    7      50
Recommended Practice

Method 1 ( O(n^2) time complexity ):

The last element of postorder traversal is always root. We first construct the root. Then we find the index of last element which is smaller than root. Let the index be ‘i’. The values between 0 and ‘i’ are part of left subtree, and the values between ‘i+1’ and ‘n-2’ are part of right subtree. Divide given post[] at index “i” and recur for left and right sub-trees.

For example in {1, 7, 5, 50, 40, 10}, 10 is the last element, so we make it root. Now we look for the last element smaller than 10, we find 5. So we know the structure of BST is as following.

10
/    \
/      \
{1, 7, 5}       {50, 40}

We recursively follow above steps for subarrays {1, 7, 5} and {40, 50}, and get the complete tree.

Method 2 ( O(n) time complexity ):

The trick is to set a range {min .. max} for every node. Initialize the range as {INT_MIN .. INT_MAX}. The last node will definitely be in range, so create root node. To construct the left subtree, set the range as {INT_MIN â€¦root->data}. If a values is in the range {INT_MIN .. root->data}, the values is part of left subtree. To construct the right subtree, set the range as {root->data .. INT_MAX}.

Following code is used to generate the exact Binary Search Tree of a given post order traversal.

## C++

 /* A O(n) program for construction of BST from postorder traversal */ #include using namespace std;   /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node {     int data;     struct node *left, *right; };   // A utility function to create a node struct node* newNode (int data) {     struct node* temp = (struct node *) malloc(sizeof(struct node));       temp->data = data;     temp->left = temp->right = NULL;       return temp; }   // A recursive function to construct // BST from post[]. postIndex is used // to keep track of index in post[]. struct node* constructTreeUtil(int post[], int* postIndex,                                int key, int min, int max,                                int size) {     // Base case     if (*postIndex < 0)         return NULL;       struct node* root = NULL;       // If current element of post[] is     // in range, then only it is part     // of current subtree     if (key > min && key < max)     {         // Allocate memory for root of this         // subtree and decrement *postIndex         root = newNode(key);         *postIndex = *postIndex - 1;           if (*postIndex >= 0)         {           // All nodes which are in range {key..max}         // will go in right subtree, and first such         // node will be root of right subtree.         root->right = constructTreeUtil(post, postIndex,                                         post[*postIndex],                                         key, max, size );           // Construct the subtree under root         // All nodes which are in range {min .. key}         // will go in left subtree, and first such         // node will be root of left subtree.         root->left = constructTreeUtil(post, postIndex,                                        post[*postIndex],                                        min, key, size );         }     }     return root; }   // The main function to construct BST // from given postorder traversal. // This function mainly uses constructTreeUtil() struct node *constructTree (int post[],                             int size) {     int postIndex = size-1;     return constructTreeUtil(post, &postIndex,                              post[postIndex],                              INT_MIN, INT_MAX, size); }   // A utility function to print // inorder traversal of a Binary Tree void printInorder (struct node* node) {     if (node == NULL)         return;     printInorder(node->left);     cout << node->data << " ";     printInorder(node->right); }   // Driver Code int main () {     int post[] = {1, 7, 5, 50, 40, 10};     int size = sizeof(post) / sizeof(post[0]);       struct node *root = constructTree(post, size);       cout << "Inorder traversal of "         << "the constructed tree: \n";     printInorder(root);       return 0; }   // This code is contributed // by Akanksha Rai

## C

 /* A O(n) program for construction of BST from    postorder traversal */ #include #include #include   /* A binary tree node has data, pointer to left child    and a pointer to right child */ struct node {     int data;     struct node *left, *right; };   // A utility function to create a node struct node* newNode (int data) {     struct node* temp =         (struct node *) malloc( sizeof(struct node));       temp->data = data;     temp->left = temp->right = NULL;       return temp; }   // A recursive function to construct BST from post[]. // postIndex is used to keep track of index in post[]. struct node* constructTreeUtil(int post[], int* postIndex,                          int key, int min, int max, int size) {     // Base case     if (*postIndex < 0)         return NULL;       struct node* root = NULL;       // If current element of post[] is in range, then     // only it is part of current subtree     if (key > min && key < max)     {         // Allocate memory for root of this subtree and decrement         // *postIndex         root = newNode(key);         *postIndex = *postIndex - 1;           if (*postIndex >= 0)         {             // All nodes which are in range {key..max} will go in right           // subtree, and first such node will be root of right subtree.           root->right = constructTreeUtil(post, postIndex, post[*postIndex],                                           key, max, size );             // Construct the subtree under root           // All nodes which are in range {min .. key} will go in left           // subtree, and first such node will be root of left subtree.           root->left = constructTreeUtil(post, postIndex, post[*postIndex],                                          min, key, size );         }     }     return root; }   // The main function to construct BST from given postorder // traversal. This function mainly uses constructTreeUtil() struct node *constructTree (int post[], int size) {     int postIndex = size-1;     return constructTreeUtil(post, &postIndex, post[postIndex],                              INT_MIN, INT_MAX, size); }   // A utility function to print inorder traversal of a Binary Tree void printInorder (struct node* node) {     if (node == NULL)         return;     printInorder(node->left);     printf("%d ", node->data);     printInorder(node->right); }   // Driver program to test above functions int main () {     int post[] = {1, 7, 5, 50, 40, 10};     int size = sizeof(post) / sizeof(post[0]);       struct node *root = constructTree(post, size);       printf("Inorder traversal of the constructed tree: \n");     printInorder(root);       return 0; }

## Java

 /* A O(n) program for construction of BST from    postorder traversal */    /* A binary tree node has data, pointer to left child    and a pointer to right child */ class Node {     int data;     Node left, right;       Node(int data)     {         this.data = data;         left = right = null;     } }   // Class containing variable that keeps a track of overall // calculated postindex class Index {     int postindex = 0; }   class BinaryTree {     // A recursive function to construct BST from post[].     // postIndex is used to keep track of index in post[].     Node constructTreeUtil(int post[], Index postIndex,             int key, int min, int max, int size)     {         // Base case         if (postIndex.postindex < 0)             return null;           Node root = null;           // If current element of post[] is in range, then         // only it is part of current subtree         if (key > min && key < max)         {             // Allocate memory for root of this subtree and decrement             // *postIndex             root = new Node(key);             postIndex.postindex = postIndex.postindex - 1;               if (postIndex.postindex >= 0)             {                 // All nodes which are in range {key..max} will go in                 // right subtree, and first such node will be root of right                 // subtree                 root.right = constructTreeUtil(post, postIndex,                         post[postIndex.postindex],key, max, size);                   // Construct the subtree under root                 // All nodes which are in range {min .. key} will go in left                 // subtree, and first such node will be root of left subtree.                 root.left = constructTreeUtil(post, postIndex,                         post[postIndex.postindex],min, key, size);             }         }         return root;     }       // The main function to construct BST from given postorder     // traversal. This function mainly uses constructTreeUtil()     Node constructTree(int post[], int size)     {         Index index = new Index();         index.postindex = size - 1;         return constructTreeUtil(post, index, post[index.postindex],                 Integer.MIN_VALUE, Integer.MAX_VALUE, size);     }       // A utility function to print inorder traversal of a Binary Tree     void printInorder(Node node)     {         if (node == null)             return;         printInorder(node.left);         System.out.print(node.data + " ");         printInorder(node.right);     }       // Driver program to test above functions     public static void main(String[] args)     {         BinaryTree tree = new BinaryTree();         int post[] = new int[]{1, 7, 5, 50, 40, 10};         int size = post.length;           Node root = tree.constructTree(post, size);           System.out.println("Inorder traversal of the constructed tree:");         tree.printInorder(root);     } }   // This code has been contributed by Mayank Jaiswal

## Python3

 # A O(n) program for construction of BST # from postorder traversal INT_MIN = -2**31 INT_MAX = 2**31   # A binary tree node has data, pointer to # left child and a pointer to right child # A utility function to create a node class newNode:     def __init__(self, data):         self.data = data         self.left = self.right = None           # A recursive function to construct # BST from post[]. postIndex is used # to keep track of index in post[]. def constructTreeUtil(post, postIndex,                       key, min, max, size):       # Base case     if (postIndex[0] < 0):         return None       root = None       # If current element of post[] is     # in range, then only it is part     # of current subtree     if (key > min and key < max) :               # Allocate memory for root of this         # subtree and decrement *postIndex         root = newNode(key)         postIndex[0] = postIndex[0] - 1           if (postIndex[0] >= 0) :                       # All nodes which are in range key..             # max will go in right subtree, and             # first such node will be root of             # right subtree.             root.right = constructTreeUtil(post, postIndex,                                            post[postIndex[0]],                                            key, max, size )               # Construct the subtree under root             # All nodes which are in range min ..             # key will go in left subtree, and             # first such node will be root of             # left subtree.             root.left = constructTreeUtil(post, postIndex,                                           post[postIndex[0]],                                           min, key, size )               return root   # The main function to construct BST # from given postorder traversal. This # function mainly uses constructTreeUtil() def constructTree (post, size) :       postIndex = [size-1]     return constructTreeUtil(post, postIndex,                              post[postIndex[0]],                              INT_MIN, INT_MAX, size)   # A utility function to printInorder # traversal of a Binary Tree def printInorder (node) :       if (node == None) :         return     printInorder(node.left)     print(node.data, end = " ")     printInorder(node.right)   # Driver Code if __name__ == '__main__':     post = [1, 7, 5, 50, 40, 10]     size = len(post)       root = constructTree(post, size)       print("Inorder traversal of the",                 "constructed tree: ")     printInorder(root)   # This code is contributed # by SHUBHAMSINGH10

## C#

 using System; /* A O(n) program for construction of BST from postorder traversal */   /* A binary tree node has data, pointer to left child and a  pointer to right child */ class Node {     public int data;     public Node left, right;       public Node(int data)     {         this.data = data;         left = right = null;     } }   // Class containing variable // that keeps a track of overall // calculated postindex class Index {     public int postindex = 0; }   public class BinaryTree {     // A recursive function to     // construct BST from post[].     // postIndex is used to     // keep track of index in post[].     Node constructTreeUtil(int []post, Index postIndex,                     int key, int min, int max, int size)     {         // Base case         if (postIndex.postindex < 0)             return null;           Node root = null;           // If current element of post[] is in range, then         // only it is part of current subtree         if (key > min && key < max)         {             // Allocate memory for root of              // this subtree and decrement *postIndex             root = new Node(key);             postIndex.postindex = postIndex.postindex - 1;               if (postIndex.postindex >= 0)             {                 // All nodes which are in range                 // {key..max} will go in right subtree,                 // and first such node will be root of                 // right subtree                 root.right = constructTreeUtil(post, postIndex,                         post[postIndex.postindex], key, max, size);                   // Construct the subtree under root                 // All nodes which are in range                 // {min .. key} will go in left                 // subtree, and first such node                 // will be root of left subtree.                 root.left = constructTreeUtil(post, postIndex,                         post[postIndex.postindex],min, key, size);             }         }         return root;     }       // The main function to construct     // BST from given postorder traversal.     // This function mainly uses constructTreeUtil()     Node constructTree(int []post, int size)     {         Index index = new Index();         index.postindex = size - 1;         return constructTreeUtil(post, index,                         post[index.postindex],                         int.MinValue, int.MaxValue, size);     }       // A utility function to print     // inorder traversal of a Binary Tree     void printInorder(Node node)     {         if (node == null)             return;         printInorder(node.left);         Console.Write(node.data + " ");         printInorder(node.right);     }       // Driver code     public static void Main(String[] args)     {         BinaryTree tree = new BinaryTree();         int []post = new int[]{1, 7, 5, 50, 40, 10};         int size = post.Length;           Node root = tree.constructTree(post, size);           Console.WriteLine("Inorder traversal of" +                             "the constructed tree:");         tree.printInorder(root);     } }   // This code has been contributed by PrinciRaj1992

## Javascript



Output

Inorder traversal of the constructed tree:
1 5 7 10 40 50

Time Complexity: O(n)

Space Complexity: O(h), where h is the height of the BST

Note that the output to the program will always be a sorted sequence as we are printing the inorder traversal of a Binary Search Tree.

If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next