Connected Components in an undirected graph

Given an undirected graph, print all connected components line by line. For example consider the following graph.

SCCUndirected

We strongly recommend to minimize your browser and try this yourself first.
We have discussed algorithms for finding strongly connected components in directed graphs in following posts. 
Kosaraju’s algorithm for strongly connected components
Tarjan’s Algorithm to find Strongly Connected Components
Finding connected components for an undirected graph is an easier task. We simple need to do either BFS or DFS starting from every unvisited vertex, and we get all strongly connected components. Below are steps based on DFS.

1) Initialize all vertices as not visited.
2) Do following for every vertex 'v'.
       (a) If 'v' is not visited before, call DFSUtil(v)
       (b) Print new line character

DFSUtil(v)
1) Mark 'v' as visited.
2) Print 'v'
3) Do following for every adjacent 'u' of 'v'.
     If 'u' is not visited, then recursively call DFSUtil(u)

Below is the implementation of above algorithm.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print connected components in
// an undirected graph
#include <iostream>
#include <list>
using namespace std;
 
// Graph class represents a undirected graph
// using adjacency list representation
class Graph {
    int V; // No. of vertices
 
    // Pointer to an array containing adjacency lists
    list<int>* adj;
 
    // A function used by DFS
    void DFSUtil(int v, bool visited[]);
 
public:
    Graph(int V); // Constructor
    ~Graph();
    void addEdge(int v, int w);
    void connectedComponents();
};
 
// Method to print connected components in an
// undirected graph
void Graph::connectedComponents()
{
    // Mark all the vertices as not visited
    bool* visited = new bool[V];
    for (int v = 0; v < V; v++)
        visited[v] = false;
 
    for (int v = 0; v < V; v++) {
        if (visited[v] == false) {
            // print all reachable vertices
            // from v
            DFSUtil(v, visited);
 
            cout << "\n";
        }
    }
    delete[] visited;
}
 
void Graph::DFSUtil(int v, bool visited[])
{
    // Mark the current node as visited and print it
    visited[v] = true;
    cout << v << " ";
 
    // Recur for all the vertices
    // adjacent to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            DFSUtil(*i, visited);
}
 
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
 
Graph::~Graph() { delete[] adj; }
 
// method to add an undirected edge
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w);
    adj[w].push_back(v);
}
 
// Driver code
int main()
{
    // Create a graph given in the above diagram
    Graph g(5); // 5 vertices numbered from 0 to 4
    g.addEdge(1, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 4);
 
    cout << "Following are connected components \n";
    g.connectedComponents();
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print connected components in
// an undirected graph
import java.util.ArrayList;
class Graph
{
    // A user define class to represent a graph.
    // A graph is an array of adjacency lists.
    // Size of array will be V (number of vertices
    // in graph)
    int V;
    ArrayList<ArrayList<Integer> > adjListArray;
 
    // constructor
    Graph(int V)
    {
        this.V = V;
        // define the size of array as
        // number of vertices
        adjListArray = new ArrayList<>();
 
        // Create a new list for each vertex
        // such that adjacent nodes can be stored
 
        for (int i = 0; i < V; i++) {
            adjListArray.add(i, new ArrayList<>());
        }
    }
 
    // Adds an edge to an undirected graph
    void addEdge(int src, int dest)
    {
        // Add an edge from src to dest.
        adjListArray.get(src).add(dest);
 
        // Since graph is undirected, add an edge from dest
        // to src also
        adjListArray.get(dest).add(src);
    }
 
    void DFSUtil(int v, boolean[] visited)
    {
        // Mark the current node as visited and print it
        visited[v] = true;
        System.out.print(v + " ");
        // Recur for all the vertices
        // adjacent to this vertex
        for (int x : adjListArray.get(v)) {
            if (!visited[x])
                DFSUtil(x, visited);
        }
    }
    void connectedComponents()
    {
        // Mark all the vertices as not visited
        boolean[] visited = new boolean[V];
        for (int v = 0; v < V; ++v) {
            if (!visited[v]) {
                // print all reachable vertices
                // from v
                DFSUtil(v, visited);
                System.out.println();
            }
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        // Create a graph given in the above diagram
        Graph g = new Graph(
            5); // 5 vertices numbered from 0 to 4
 
        g.addEdge(1, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 4);
        System.out.println(
            "Following are connected components");
        g.connectedComponents();
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to print connected
# components in an undirected graph
 
 
class Graph:
 
    # init function to declare class variables
    def __init__(self, V):
        self.V = V
        self.adj = [[] for i in range(V)]
 
    def DFSUtil(self, temp, v, visited):
 
        # Mark the current vertex as visited
        visited[v] = True
 
        # Store the vertex to list
        temp.append(v)
 
        # Repeat for all vertices adjacent
        # to this vertex v
        for i in self.adj[v]:
            if visited[i] == False:
 
                # Update the list
                temp = self.DFSUtil(temp, i, visited)
        return temp
 
    # method to add an undirected edge
    def addEdge(self, v, w):
        self.adj[v].append(w)
        self.adj[w].append(v)
 
    # Method to retrieve connected components
    # in an undirected graph
    def connectedComponents(self):
        visited = []
        cc = []
        for i in range(self.V):
            visited.append(False)
        for v in range(self.V):
            if visited[v] == False:
                temp = []
                cc.append(self.DFSUtil(temp, v, visited))
        return cc
 
 
# Driver Code
if __name__ == "__main__":
 
    # Create a graph given in the above diagram
    # 5 vertices numbered from 0 to 4
    g = Graph(5)
    g.addEdge(1, 0)
    g.addEdge(2, 3)
    g.addEdge(3, 4)
    cc = g.connectedComponents()
    print("Following are connected components")
    print(cc)
 
# This code is contributed by Abhishek Valsan

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print connected components in
// an undirected graph
#include <iostream>
#include <list>
using namespace std;
 
// Graph class represents a undirected graph
// using adjacency list representation
class Graph
{
    int V; // No. of vertices
 
    // Pointer to an array containing adjacency lists
    list<int>* adj;
 
    // A function used by DFS
    void DFSUtil(int v, bool visited[]);
 
    public : Graph(int V); // Constructor
    ~Graph();
    void addEdge(int v, int w);
    void connectedComponents();
};
 
// Method to print connected components in an
// undirected graph
void Graph::connectedComponents()
{
    // Mark all the vertices as not visited
    bool* visited = new bool[V];
    for (int v = 0; v < V; v++)
        visited[v] = false;
 
    for (int v = 0; v < V; v++) {
        if (visited[v] == false) {
            // print all reachable vertices
            // from v
            DFSUtil(v, visited);
 
            cout << "\n";
        }
    }
    delete[] visited;
}
 
void Graph::DFSUtil(int v, bool visited[])
{
    // Mark the current node as visited and print it
    visited[v] = true;
    cout << v << " ";
 
    // Recur for all the vertices
    // adjacent to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            DFSUtil(*i, visited);
}
 
Graph::Graph(int V)
{
    this -> V = V;
    adj = new list<int>[ V ];
}
 
Graph::~Graph() { delete[] adj; }
 
// method to add an undirected edge
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w);
    adj[w].push_back(v);
}
 
// Driver code
int main()
{
    // Create a graph given in the above diagram
    Graph g(5); // 5 vertices numbered from 0 to 4
    g.addEdge(1, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 4);
 
    cout << "Following are connected components \n";
    g.connectedComponents();
 
    return 0;
}

chevron_right


Output:

0 1
2 3 4

Time complexity of above solution is O(V + E) as it does simple DFS for given graph. 
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :


21


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.