Open In App

Computer Aided Software Engineering (CASE)

Improve
Improve
Like Article
Like
Save
Share
Report

Computer-aided software engineering (CASE) is the implementation of computer-facilitated tools and methods in software development. CASE is used to ensure high-quality and defect-free software. CASE ensures a check-pointed and disciplined approach and helps designers, developers, testers, managers, and others to see the project milestones during development. 

CASE can also help as a warehouse for documents related to projects, like business plans, requirements, and design specifications. One of the major advantages of using CASE is the delivery of the final product, which is more likely to meet real-world requirements as it ensures that customers remain part of the process. 

CASE illustrates a wide set of labor-saving tools that are used in software development. It generates a framework for organizing projects and to be helpful in enhancing productivity. There was more interest in the concept of CASE tools years ago, but less so today, as the tools have morphed into different functions, often in reaction to software developer needs. The concept of CASE also received a heavy dose of criticism after its release. 

What is CASE Tools?

The essential idea of CASE tools is that in-built programs can help to analyze developing systems in order to enhance quality and provide better outcomes. Throughout the 1990, CASE tool became part of the software lexicon, and big companies like IBM were using these kinds of tools to help create software. 

Various tools are incorporated in CASE and are called CASE tools, which are used to support different stages and milestones in a software development life cycle. 

Types of CASE Tools:

  1. Diagramming Tools: It helps in diagrammatic and graphical representations of the data and system processes. It represents system elements, control flow and data flow among different software components and system structures in a pictorial form. For example, Flow Chart Maker tool for making state-of-the-art flowcharts.  
  2. Computer Display and Report Generators: These help in understanding the data requirements and the relationships involved. 
  3. Analysis Tools: It focuses on inconsistent, incorrect specifications involved in the diagram and data flow. It helps in collecting requirements, automatically check for any irregularity, imprecision in the diagrams, data redundancies, or erroneous omissions. 
    For example:
    • (i) Accept 360, Accompa, CaseComplete for requirement analysis. 
    • (ii) Visible Analyst for total analysis. 
       
  4. Central Repository: It provides a single point of storage for data diagrams, reports, and documents related to project management.
  5. Documentation Generators: It helps in generating user and technical documentation as per standards. It creates documents for technical users and end users. 
    For example, Doxygen, DrExplain, Adobe RoboHelp for documentation.  
  6. Code Generators: It aids in the auto-generation of code, including definitions, with the help of designs, documents, and diagrams.
  7. Tools for Requirement Management: It makes gathering, evaluating, and managing software needs easier.
  8. Tools for Analysis and Design: It offers instruments for modelling system architecture and behaviour, which helps throughout the analysis and design stages of software development.
  9. Tools for Database Management: It facilitates database construction, design, and administration.
  10. Tools for Documentation: It makes the process of creating, organizing, and maintaining project documentation easier.

Advantages of the CASE approach: 

  • Improved Documentation: Comprehensive documentation creation and maintenance is made easier by CASE tools. Since automatically generated documentation is usually more accurate and up to date, there are fewer opportunities for errors and misunderstandings brought on by out-of-current material.
  • Reusing Components: Reusable component creation and maintenance are frequently facilitated by CASE tools. This encourages a development approach that is modular and component-based, enabling teams to shorten development times and reuse tested solutions.
  • Quicker Cycles of Development: Development cycles take less time when certain jobs, such testing and code generation, are automated. This may result in software solutions being delivered more quickly, meeting deadlines and keeping up with changing business requirements.
  • Improved Results: Code generation, documentation, and testing are just a few of the time-consuming, repetitive operations that CASE tools perform. Due to this automation, engineers are able to concentrate on more intricate and imaginative facets of software development, which boosts output.
  • Achieving uniformity and standardization: Coding conventions, documentation formats and design patterns are just a few of the areas of software development where CASE tools enforce uniformity and standards. This guarantees consistent and maintainable software development.

Disadvantages of the CASE approach: 

  • Cost: Using a case tool is very costly. Most firms engaged in software development on a small scale do not invest in CASE tools because they think that the benefit of CASE is justifiable only in the development of large systems.
  • Learning Curve: In most cases, programmers’ productivity may fall in the initial phase of implementation, because users need time to learn the technology. Many consultants offer training and on-site services that can be important to accelerate the learning curve and to the development and use of the CASE tools.
  • Tool Mix: It is important to build an appropriate selection tool mix to urge cost advantage CASE integration and data integration across all platforms is extremely important.

Conclusion:

In today’s software development world, computer-aided software engineering is a vital tool that enables teams to produce high-quality software quickly and cooperatively. CASE tools will probably become more and more essential as technology develops in order to satisfy the demands of complicated software development projects.


Last Updated : 19 Jan, 2024
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads