Related Articles

Related Articles

Compute the mean, standard deviation, and variance of a given NumPy array
  • Last Updated : 29 Aug, 2020

 In NumPy, we can compute the mean, standard deviation, and variance of a given array along the second axis by two approaches first is by using inbuilt functions and second is by the formulas of the mean, standard deviation, and variance.

Method 1: Using numpy.mean(), numpy.std(), numpy.var()

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
  
  
# Original array
array = np.arange(10)
print(array)
  
r1 = np.mean(array)
print("\nMean: ", r1)
  
r2 = np.std(array)
print("\nstd: ", r2)
  
r3 = np.var(array)
print("\nvariance: ", r3)

chevron_right


Output:

[0 1 2 3 4 5 6 7 8 9]

Mean:  4.5

std:  2.8722813232690143

variance:  8.25

Method 2: Using the formulas 



Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
  
# Original array
array = np.arange(10)
print(array)
  
r1 = np.average(array)
print("\nMean: ", r1)
  
r2 = np.sqrt(np.mean((array - np.mean(array)) ** 2))
print("\nstd: ", r2)
  
r3 = np.mean((array - np.mean(array)) ** 2)
print("\nvariance: ", r3)

chevron_right


Output:

[0 1 2 3 4 5 6 7 8 9]

Mean:  4.5

std:  2.8722813232690143

variance:  8.25

Example: Comparing both inbuilt methods and formulas

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
  
# Original array
x = np.arange(5)
print(x)
  
r11 = np.mean(x)
r12 = np.average(x)
print("\nMean: ", r11, r12)
  
r21 = np.std(x)
r22 = np.sqrt(np.mean((x - np.mean(x)) ** 2))
print("\nstd: ", r21, r22)
  
r31 = np.var(x)
r32 = np.mean((x - np.mean(x)) ** 2)
print("\nvariance: ", r31, r32)

chevron_right


Output:

[0 1 2 3 4]

Mean:  2.0 2.0

std:  1.4142135623730951 1.4142135623730951

variance:  2.0 2.0

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :