Related Articles

Related Articles

Compute the covariance matrix of two given NumPy arrays
  • Last Updated : 29 Aug, 2020

In NumPy for computing the covariance matrix of two given arrays with help of numpy.cov(). In this, we will pass the two arrays and it will return the covariance matrix of two given arrays.

Syntax: numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)

Example 1:

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
  
  
array1 = np.array([0, 1, 1])
array2 = np.array([2, 2, 1])
  
# Original array1
print(array1)
  
# Original array2
print(array2)
  
# Covariance matrix
print("\nCovariance matrix of the said arrays:\n",
      np.cov(array1, array2))

chevron_right


Output:

[0 1 1]
[2 2 1]

Covariance matrix of the said arrays:
 [[ 0.33333333 -0.16666667]
 [-0.16666667  0.33333333]]

Example 2:



Python

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
  
  
array1 = np.array([2, 1, 1, 4])
array2 = np.array([2, 2, 1, 1])
  
# Original array1
print(array1)
  
# Original array2
print(array2)
  
# Covariance matrix
print("\nCovariance matrix of the said arrays:\n"
      np.cov(array1, array2))

chevron_right


Output:

[2 1 1 4]
[2 2 1 1]

Covariance matrix of the said arrays:
 [[ 2.         -0.33333333]
 [-0.33333333  0.33333333]]

Example 3:

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
  
  
array1 = np.array([1, 2])
array2 = np.array([1, 2])
  
# Original array1
print(array1)
  
# Original array2
print(array2)
  
# Covariance matrix
print("\nCovariance matrix of the said arrays:\n"
      np.cov(array1, array2))

chevron_right


Output

[1 2]
[1 2]

Covariance matrix of the said arrays:
 [[0.5 0.5]
 [0.5 0.5]]

Example 4:

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np 
    
x = [1.23, 2.12, 3.34, 4.5
y = [2.56, 2.89, 3.76, 3.95
    
# find out covariance with respect 
# rows 
cov_mat = np.stack((x, y), axis = 1)  
    
print("shape of matrix x and y:"
      np.shape(cov_mat)) 
  
print("shape of covariance matrix:",
      np.shape(np.cov(cov_mat))) 
  
print(np.cov(cov_mat))

chevron_right


Output

shape of matrix x and y: (4, 2)
shape of covariance matrix: (4, 4)
[[ 0.88445  0.51205  0.2793  -0.36575]
 [ 0.51205  0.29645  0.1617  -0.21175]
 [ 0.2793   0.1617   0.0882  -0.1155 ]
 [-0.36575 -0.21175 -0.1155   0.15125]]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :