Open In App

Compute the covariance matrix of two given NumPy arrays

Last Updated : 29 Aug, 2020
Improve
Improve
Like Article
Like
Save
Share
Report

In NumPy for computing the covariance matrix of two given arrays with help of numpy.cov(). In this, we will pass the two arrays and it will return the covariance matrix of two given arrays.

Syntax: numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)

Example 1:

Python




import numpy as np
  
  
array1 = np.array([0, 1, 1])
array2 = np.array([2, 2, 1])
  
# Original array1
print(array1)
  
# Original array2
print(array2)
  
# Covariance matrix
print("\nCovariance matrix of the said arrays:\n",
      np.cov(array1, array2))


Output:

[0 1 1]
[2 2 1]

Covariance matrix of the said arrays:
 [[ 0.33333333 -0.16666667]
 [-0.16666667  0.33333333]]

Example 2:

Python




import numpy as np
  
  
array1 = np.array([2, 1, 1, 4])
array2 = np.array([2, 2, 1, 1])
  
# Original array1
print(array1)
  
# Original array2
print(array2)
  
# Covariance matrix
print("\nCovariance matrix of the said arrays:\n"
      np.cov(array1, array2))


Output:

[2 1 1 4]
[2 2 1 1]

Covariance matrix of the said arrays:
 [[ 2.         -0.33333333]
 [-0.33333333  0.33333333]]

Example 3:

Python




import numpy as np
  
  
array1 = np.array([1, 2])
array2 = np.array([1, 2])
  
# Original array1
print(array1)
  
# Original array2
print(array2)
  
# Covariance matrix
print("\nCovariance matrix of the said arrays:\n"
      np.cov(array1, array2))


Output

[1 2]
[1 2]

Covariance matrix of the said arrays:
 [[0.5 0.5]
 [0.5 0.5]]

Example 4:

Python




import numpy as np 
    
x = [1.23, 2.12, 3.34, 4.5
y = [2.56, 2.89, 3.76, 3.95
    
# find out covariance with respect 
# rows 
cov_mat = np.stack((x, y), axis = 1)  
    
print("shape of matrix x and y:"
      np.shape(cov_mat)) 
  
print("shape of covariance matrix:",
      np.shape(np.cov(cov_mat))) 
  
print(np.cov(cov_mat))


Output

shape of matrix x and y: (4, 2)
shape of covariance matrix: (4, 4)
[[ 0.88445  0.51205  0.2793  -0.36575]
 [ 0.51205  0.29645  0.1617  -0.21175]
 [ 0.2793   0.1617   0.0882  -0.1155 ]
 [-0.36575 -0.21175 -0.1155   0.15125]]


Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads