Related Articles

# Compute pearson product-moment correlation coefficients of two given NumPy arrays

• Last Updated : 02 Sep, 2020

In NumPy, We can compute pearson product-moment correlation coefficients of two given arrays with the help of numpy.corrcoef() function.

In this function, we will pass arrays as a parameter and it will return the pearson product-moment correlation coefficients of two given arrays.

Syntax: numpy.corrcoef(x, y=None, rowvar=True, bias=, ddof=)
Return: Pearson product-moment correlation coefficients

Let’s see an example:

Example 1:

## Python

 `# import library``import` `numpy as np`` ` `# create numpy 1d-array``array1 ``=` `np.array([``0``, ``1``, ``2``])``array2 ``=` `np.array([``3``, ``4``, ``5``])`` ` `# pearson product-moment correlation``# coefficients of the arrays``rslt ``=` `np.corrcoef(array1, array2)`` ` `print``(rslt)`

Output

```[[1. 1.]
[1. 1.]]
```

Example 2:

## Python

 `# import numpy library``import` `numpy as np`` ` `# create a numpy 1d-array``array1 ``=` `np.array([ ``2``, ``4``, ``8``])``array2 ``=` `np.array([ ``3``, ``2``,``1``])`` ` ` ` `# pearson product-moment correlation``# coefficients of the arrays``rslt2 ``=` `np.corrcoef(array1, array2)`` ` `print``(rslt2)`

Output

```[[ 1.         -0.98198051]
[-0.98198051  1.        ]]
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up