Open In App

Compute n! under modulo p

Improve
Improve
Like Article
Like
Save
Share
Report

Given a large number n and a prime p, how to efficiently compute n! % p?
Examples : 
 

Input:  n = 5, p = 13
Output: 3
5! = 120 and 120 % 13 = 3

Input:  n = 6, p = 11
Output: 5
6! = 720 and 720 % 11 = 5

A Naive Solution is to first compute n!, then compute n! % p. This solution works fine when the value of n! is small. The value of n! % p is generally needed for large values of n when n! cannot fit in a variable, and causes overflow. So computing n! and then using modular operator is not a good idea as there will be overflow even for slightly larger values of n and r. 
Following are different methods.
Method 1 (Simple) 
A Simple Solution is to one by one multiply result with i under modulo p. So the value of result doesn’t go beyond p before next iteration.
 

C++




// Simple method to compute n! % p
#include <bits/stdc++.h>
using namespace std;
 
// Returns value of n! % p
int modFact(int n, int p)
{
    if (n >= p)
        return 0;
 
    int result = 1;
    for (int i = 1; i <= n; i++)
        result = (result * i) % p;
 
    return result;
}
 
// Driver program
int main()
{
    int n = 25, p = 29;
    cout << modFact(n, p);
    return 0;
}


Java




// Simple method to compute n! % p
import java.io.*;
 
class GFG
{
    // Returns value of n! % p
    static int modFact(int n,
                       int p)
    {
        if (n >= p)
            return 0;
     
        int result = 1;
        for (int i = 1; i <= n; i++)
            result = (result * i) % p;
     
        return result;
    }
     
    // Driver Code
    public static void main (String[] args)
    {
        int n = 25, p = 29;
        System.out.print(modFact(n, p));
    }
}
 
// This code is contributed
// by aj_36


Python3




# Simple method to compute n ! % p
 
# Returns value of n ! % p
def modFact(n, p):
    if n >= p:
        return 0   
 
    result = 1
    for i in range(1, n + 1):
        result = (result * i) % p
 
    return result
 
# Driver Code
n = 25; p = 29
print (modFact(n, p))
 
# This code is contributed by Shreyanshi Arun.


C#




// Simple method to compute n! % p
using System;
  
class GFG {
      
    // Returns value of n! % p
    static int modFact(int n, int p)
    {
        if (n >= p)
            return 0;
     
        int result = 1;
        for (int i = 1; i <= n; i++)
            result = (result * i) % p;
     
        return result;
    }
     
    // Driver program
    static void Main()
    {
        int n = 25, p = 29;
        Console.Write(modFact(n, p));
    }
}
 
// This code is contributed by Anuj_67


PHP




<?php
// PHP Simple method to compute n! % p
 
// Returns value of n! % p
function modFact($n, $p)
{
    if ($n >= $p)
    return 0;
 
    $result = 1;
    for ($i = 1; $i <= $n; $i++)
        $result = ($result * $i) % $p;
 
    return $result;
}
 
// Driver Code
$n = 25; $p = 29;
echo modFact($n, $p);
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// Simple method to compute n! % p
 
    // Returns value of n! % p
     function modFact(n,p)
    {
        if (n >= p)
            return 0;
     
        let result = 1;
        for (let i = 1; i <= n; i++)
            result = (result * i) % p;
     
        return result;
    }
     
    // Driver Code
     
        let n = 25, p = 29;
        document.write(modFact(n, p));
 
// This code is contributed by Rajput-Ji
 
</script>


Output : 

5

Time Complexity : O(n).

Auxiliary Space : O(1) since using only constant space

Method 2 (Using Sieve) 
The idea is based on below formula discussed here

The largest possible power of a prime pi that divides n is,
    ?n/pi? + ?n/(pi2)? +  ?n/(pi3)? + .....+ 0 

Every integer can be written as multiplication of powers of primes.  So,
  n! = p1k1 * p2k2 * p3k3 * ....
  Where p1, p2, p3, .. are primes and 
        k1, k2, k3, .. are integers greater than or equal to 1.

The idea is to find all primes smaller than n using Sieve of Eratosthenes. For every prime ‘pi‘, find the largest power of it that divides n!. Let the largest power be ki. Compute piki % p using modular exponentiation. Multiply this with final result under modulo p.
Below is implementation of above idea.
 

C++




// C++ program to Returns n % p
// using Sieve of Eratosthenes
#include <bits/stdc++.h>
using namespace std;
 
// Returns largest power of p that divides n!
int largestPower(int n, int p)
{
    // Initialize result
    int x = 0;
 
    // Calculate x = n/p + n/(p^2) + n/(p^3) + ....
    while (n) {
        n /= p;
        x += n;
    }
    return x;
}
 
// Utility function to do modular exponentiation.
// It returns (x^y) % p
int power(int x, int y, int p)
{
    int res = 1; // Initialize result
    x = x % p; // Update x if it is more than or
    // equal to p
    while (y > 0) {
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Returns n! % p
int modFact(int n, int p)
{
    if (n >= p)
        return 0;
 
    int res = 1;
 
    // Use Sieve of Eratosthenes to find all primes
    // smaller than n
    bool isPrime[n + 1];
    memset(isPrime, 1, sizeof(isPrime));
    for (int i = 2; i * i <= n; i++) {
        if (isPrime[i]) {
            for (int j = 2 * i; j <= n; j += i)
                isPrime[j] = 0;
        }
    }
 
    // Consider all primes found by Sieve
    for (int i = 2; i <= n; i++) {
        if (isPrime[i]) {
            // Find the largest power of prime 'i' that divides n
            int k = largestPower(n, i);
 
            // Multiply result with (i^k) % p
            res = (res * power(i, k, p)) % p;
        }
    }
    return res;
}
 
// Driver method
int main()
{
    int n = 25, p = 29;
    cout << modFact(n, p);
    return 0;
}


Java




import java.util.Arrays;
 
// Java program Returns n % p using Sieve of Eratosthenes
public class GFG {
 
// Returns largest power of p that divides n!
    static int largestPower(int n, int p) {
        // Initialize result
        int x = 0;
 
        // Calculate x = n/p + n/(p^2) + n/(p^3) + ....
        while (n > 0) {
            n /= p;
            x += n;
        }
        return x;
    }
 
// Utility function to do modular exponentiation.
// It returns (x^y) % p
    static int power(int x, int y, int p) {
        int res = 1; // Initialize result
        x = x % p; // Update x if it is more than or
        // equal to p
        while (y > 0) {
            // If y is odd, multiply x with result
            if (y % 2 == 1) {
                res = (res * x) % p;
            }
 
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
 
// Returns n! % p
    static int modFact(int n, int p) {
        if (n >= p) {
            return 0;
        }
 
        int res = 1;
 
        // Use Sieve of Eratosthenes to find all primes
        // smaller than n
        boolean isPrime[] = new boolean[n + 1];
        Arrays.fill(isPrime, true);
        for (int i = 2; i * i <= n; i++) {
            if (isPrime[i]) {
                for (int j = 2 * i; j <= n; j += i) {
                    isPrime[j] = false;
                }
            }
        }
 
        // Consider all primes found by Sieve
        for (int i = 2; i <= n; i++) {
            if (isPrime[i]) {
                // Find the largest power of prime 'i' that divides n
                int k = largestPower(n, i);
 
                // Multiply result with (i^k) % p
                res = (res * power(i, k, p)) % p;
            }
        }
        return res;
    }
 
// Driver method
    static public void main(String[] args) {
        int n = 25, p = 29;
        System.out.println(modFact(n, p));
 
    }
}
// This code is contributed by Rajput-Ji


Python3




# Python3 program to Returns n % p
# using Sieve of Eratosthenes
 
# Returns largest power of p that divides n!
def largestPower(n, p):
     
    # Initialize result
    x = 0
     
    # Calculate x = n/p + n/(p^2) + n/(p^3) + ....
    while (n):
        n //= p
        x += n
    return x
 
# Utility function to do modular exponentiation.
# It returns (x^y) % p
def power( x, y, p):
    res = 1 # Initialize result
    x = x % p # Update x if it is more than
              # or equal to p
    while (y > 0) :
         
        # If y is odd, multiply x with result
        if (y & 1) :
            res = (res * x) % p
 
        # y must be even now
        y = y >> 1 # y = y/2
        x = (x * x) % p
 
    return res
 
# Returns n! % p
def modFact( n, p) :
 
    if (n >= p) :
        return 0
 
    res = 1
 
    # Use Sieve of Eratosthenes to find
    # all primes smaller than n
    isPrime = [1] * (n + 1)
    i = 2
    while(i * i <= n):
        if (isPrime[i]):
            for j in range(2 * i, n, i) :
                isPrime[j] = 0
        i += 1
         
    # Consider all primes found by Sieve
    for i in range(2, n):
        if (isPrime[i]) :
             
            # Find the largest power of prime 'i'
            # that divides n
            k = largestPower(n, i)
 
            # Multiply result with (i^k) % p
            res = (res * power(i, k, p)) % p
 
    return res
 
# Driver code
if __name__ =="__main__":
    n = 25
    p = 29
    print(modFact(n, p))
 
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)


C#




// C# program Returns n % p using Sieve of Eratosthenes
using System;
 
 
public class GFG {
 
// Returns largest power of p that divides n!
    static int largestPower(int n, int p) {
        // Initialize result
        int x = 0;
 
        // Calculate x = n/p + n/(p^2) + n/(p^3) + ....
        while (n > 0) {
            n /= p;
            x += n;
        }
        return x;
    }
 
// Utility function to do modular exponentiation.
// It returns (x^y) % p
    static int power(int x, int y, int p) {
        int res = 1; // Initialize result
        x = x % p; // Update x if it is more than or
        // equal to p
        while (y > 0) {
            // If y is odd, multiply x with result
            if (y % 2 == 1) {
                res = (res * x) % p;
            }
 
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
 
// Returns n! % p
    static int modFact(int n, int p) {
        if (n >= p) {
            return 0;
        }
 
        int res = 1;
 
        // Use Sieve of Eratosthenes to find all primes
        // smaller than n
        bool []isPrime = new bool[n + 1];
        for(int i = 0;i<n+1;i++)
            isPrime[i] = true;
        for (int i = 2; i * i <= n; i++) {
            if (isPrime[i]) {
                for (int j = 2 * i; j <= n; j += i) {
                    isPrime[j] = false;
                }
            }
        }
 
        // Consider all primes found by Sieve
        for (int i = 2; i <= n; i++) {
            if (isPrime[i]) {
                // Find the largest power of prime 'i' that divides n
                int k = largestPower(n, i);
 
                // Multiply result with (i^k) % p
                res = (res * power(i, k, p)) % p;
            }
        }
        return res;
    }
 
// Driver method
    static public void Main() {
        int n = 25, p = 29;
        Console.WriteLine(modFact(n, p));
 
    }
}
// This code is contributed by PrinciRaj19992


PHP




<?php
// PHP program to Returns n % p
// using Sieve of Eratosthenes
 
// Returns largest power of p that
// divides n!
function largestPower($n, $p)
{
    // Initialize result
    $x = 0;
 
    // Calculate x = n/p + n/(p^2) + n/(p^3) + ....
    while ($n)
    {
        $n = (int)($n / $p);
        $x += $n;
    }
    return $x;
}
 
// Utility function to do modular exponentiation.
// It returns (x^y) % p
function power($x, $y, $p)
{
    $res = 1; // Initialize result
    $x = $x % $p; // Update x if it is more
                  // than or equal to p
    while ($y > 0)
    {
        // If y is odd, multiply x with result
        if ($y & 1)
            $res = ($res * $x) % $p;
 
        // y must be even now
        $y = $y >> 1; // y = y/2
        $x = ($x * $x) % $p;
    }
    return $res;
}
 
// Returns n! % p
function modFact($n, $p)
{
    if ($n >= $p)
        return 0;
 
    $res = 1;
 
    // Use Sieve of Eratosthenes to find
    // all primes smaller than n
    $isPrime = array_fill(0, $n + 1, true);
    for ($i = 2; $i * $i <= $n; $i++)
    {
        if ($isPrime[$i])
        {
            for ($j = 2 * $i; $j <= $n; $j += $i)
                $isPrime[$j] = 0;
        }
    }
 
    // Consider all primes found by Sieve
    for ($i = 2; $i <= $n; $i++)
    {
        if ($isPrime[$i])
        {
            // Find the largest power of
            // prime 'i' that divides n
            $k = largestPower($n, $i);
 
            // Multiply result with (i^k) % p
            $res = ($res * power($i, $k, $p)) % $p;
        }
    }
    return $res;
}
 
// Driver Code
$n = 25;
$p = 29;
echo modFact($n, $p);
 
// This code is contributed by mits
?>


Javascript




<script>
 
    // Javascript program Returns n % p
    // using Sieve of Eratosthenes
     
    // Returns largest power of p
    // that divides n!
    function largestPower(n, p)
    {
        // Initialize result
        let x = 0;
  
        // Calculate x = n/p + n/(p^2) +
        // n/(p^3) + ....
        while (n > 0) {
            n = parseInt(n / p, 10);
            x += n;
        }
        return x;
    }
  
    // Utility function to do
    // modular exponentiation.
    // It returns (x^y) % p
    function power(x, y, p)
    {
    // Initialize result
        let res = 1;
   // Update x if it is more than or
        x = x % p;
        // equal to p
        while (y > 0) {
   // If y is odd, multiply x with result
            if (y % 2 == 1) {
                res = (res * x) % p;
            }
  
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
  
    // Returns n! % p
    function modFact(n, p) {
        if (n >= p) {
            return 0;
        }
  
        let res = 1;
  
        // Use Sieve of Eratosthenes
        // to find all primes
        // smaller than n
        let isPrime = new Array(n + 1);
        for(let i = 0;i<n+1;i++)
            isPrime[i] = true;
        for (let i = 2; i * i <= n; i++) {
            if (isPrime[i]) {
                for (let j = 2 * i; j <= n; j += i)
                {
                    isPrime[j] = false;
                }
            }
        }
  
        // Consider all primes found by Sieve
        for (let i = 2; i <= n; i++) {
            if (isPrime[i]) {
                // Find the largest power of
                // prime 'i' that divides n
                let k = largestPower(n, i);
  
                // Multiply result with (i^k) % p
                res = (res * power(i, k, p)) % p;
            }
        }
        return res;
    }
     
    let n = 25, p = 29;
      document.write(modFact(n, p));
     
</script>


Output: 

5

Time Complexity: O(nlog(logn)) 

Auxiliary Space: O(n)

This is an interesting method, but time complexity of this is more than Simple Method as time complexity of Sieve itself is O(n log log n). This method can be useful if we have list of prime numbers smaller than or equal to n available to us.

Method 3 (Using Wilson’s Theorem) 
Wilson’s theorem states that a natural number p > 1 is a prime number if and only if 

    (p - 1) ! ? -1   mod p 
OR  (p - 1) ! ?  (p-1) mod p 

Note that n! % p is 0 if n >= p. This method is mainly useful when p is close to input number n. For example (25! % 29). From Wilson’s theorem, we know that 28! is -1. So we basically need to find [ (-1) * inverse(28, 29) * inverse(27, 29) * inverse(26) ] % 29. The inverse function inverse(x, p) returns inverse of x under modulo p (See this for details). 
 

C++




// C++ program to compute n! % p using Wilson's Theorem
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to do modular exponentiation.
// It returns (x^y) % p
int power(int x, unsigned int y, int p)
{
    int res = 1; // Initialize result
    x = x % p; // Update x if it is more than or
    // equal to p
    while (y > 0) {
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Function to find modular inverse of a under modulo p
// using Fermat's method. Assumption: p is prime
int modInverse(int a, int p)
{
    return power(a, p - 2, p);
}
 
// Returns n! % p using Wilson's Theorem
int modFact(int n, int p)
{
    // n! % p is 0 if n >= p
    if (p <= n)
        return 0;
 
    // Initialize result as (p-1)! which is -1 or (p-1)
    int res = (p - 1);
 
    // Multiply modulo inverse of all numbers from (n+1)
    // to p
    for (int i = n + 1; i < p; i++)
        res = (res * modInverse(i, p)) % p;
    return res;
}
 
// Driver method
int main()
{
    int n = 25, p = 29;
    cout << modFact(n, p);
    return 0;
}


Java




// Java program to compute n! % p
// using Wilson's Theorem
class GFG
{
     
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p
static int power(int x, int y, int p)
{
    int res = 1; // Initialize result
    x = x % p;   // Update x if it is more
                 // than or equal to p
    while (y > 0)
    {
        // If y is odd, multiply
        // x with result
        if ((y & 1) > 0)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Function to find modular
// inverse of a under modulo p
// using Fermat's method.
// Assumption: p is prime
static int modInverse(int a, int p)
{
    return power(a, p - 2, p);
}
 
// Returns n! % p using
// Wilson's Theorem
static int modFact(int n, int p)
{
    // n! % p is 0 if n >= p
    if (p <= n)
        return 0;
 
    // Initialize result as (p-1)!
    // which is -1 or (p-1)
    int res = (p - 1);
 
    // Multiply modulo inverse of
    // all numbers from (n+1) to p
    for (int i = n + 1; i < p; i++)
        res = (res * modInverse(i, p)) % p;
    return res;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 25, p = 29;
    System.out.println(modFact(n, p));
}
}
 
// This code is contributed by mits


Python3




def gcdExtended(a,b):
    if(b==0): 
        return a,1,0
    g,x1,y1=gcdExtended(b,a%b) 
    x1,y1 = y1,x1-(a//b)*y1
    return g,x1,y1
# Driver code
for _ in range(int(input())): 
    n,m=map(int,input().split())
    # if n>m, then there is a  m in (1*2*3..n) % m such that
    # m % m=0 then whole ans is 0
    if(n>=m):
        print(0)
    else:
        s=1
        # Using Wilson's Theorem, (m-1)! % m = m - 1
        # Since we need (1*2*3..n) % m
        # it can be divided into two parts
        # ( ((1*2*3...n) % m) * ((n+1)*(n+2)*...*(m-1)) )%m=m-1
        # We only need to calculate 2nd part i.e. let s=((n+1)*(n+2)*...*(m-1)) ) % m
        for i in range(n+1,m):
            s=(s*i)%m
        # Then we divide (m-1) by s under modulo m means modulo inverse of s under m
        # It can be done by taking gcd extended
        g,a,b=gcdExtended(s,m)
        a=a%m
        # ans is (m-1)*(modulo inverse of s under m)
        print(((m-1)*a)%m)
     
 
# This code is contributed by Himanshu Kaithal


C#




// C# program to compute n! % p
// using Wilson's Theorem
using System;
 
// Utility function to do modular
// exponentiation. It returns (x^y) % p
class GFG
{
public int power(int x, int y, int p)
{
    int res = 1; // Initialize result
    x = x % p; // Update x if it is more
               // than or equal to p
    while (y > 0)
    {
        // If y is odd, multiply
        // x with result
        if((y & 1) > 0)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Function to find modular inverse
// of a under modulo p using Fermat's
// method. Assumption: p is prime
public int modInverse(int a, int p)
{
    return power(a, p - 2, p);
}
 
// Returns n! % p using
// Wilson's Theorem
public int modFact(int n, int p)
{
    // n! % p is 0 if n >= p
    if (p <= n)
        return 0;
 
    // Initialize result as (p-1)!
    // which is -1 or (p-1)
    int res = (p - 1);
 
    // Multiply modulo inverse of all
    // numbers from (n+1) to p
    for (int i = n + 1; i < p; i++)
        res = (res * modInverse(i, p)) % p;
    return res;
}
 
// Driver method
public static void Main()
{
    GFG g = new GFG();
    int n = 25, p = 29;
    Console.WriteLine(g.modFact(n, p));
}
}
 
// This code is contributed by Soumik


PHP




<?php
// PHP program to compute
// n!% p using Wilson's Theorem
 
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p
function power($x, $y, $p)
{
    $res = 1; // Initialize result
    $x = $x % $p; // Update x if it is
                  // more than or equal to p
    while ($y > 0)
    {
        // If y is odd, multiply
        // x with result
        if ($y & 1)
            $res = ($res * $x) % $p;
 
        // y must be even now
        $y = $y >> 1; // y = y/2
        $x = ($x * $x) % $p;
    }
    return $res;
}
 
// Function to find modular
// inverse of a under modulo
// p using Fermat's method.
// Assumption: p is prime
function modInverse($a, $p)
{
    return power($a, $p - 2, $p);
}
 
// Returns n! % p
// using Wilson's Theorem
function modFact( $n, $p)
{
    // n! % p is 0
    // if n >= p
    if ($p <= $n)
        return 0;
 
    // Initialize result as
    // (p-1)! which is -1 or (p-1)
    $res = ($p - 1);
 
    // Multiply modulo inverse
    // of all numbers from (n+1)
    // to p
    for ($i = $n + 1; $i < $p; $i++)
        $res = ($res *
                modInverse($i, $p)) % $p;
    return $res;
}
 
// Driver Code
$n = 25; $p = 29;
echo modFact($n, $p);
 
// This code is contributed by ajit
?>


Javascript




<script>
    // Javascript program to compute n! % p
    // using Wilson's Theorem
     
    // Utility function to do modular
    // exponentiation. It returns (x^y) % p
    function power(x, y, p)
    {
        let res = 1; // Initialize result
        x = x % p; // Update x if it is more
                   // than or equal to p
        while (y > 0)
        {
         
            // If y is odd, multiply
            // x with result
            if((y & 1) > 0)
                res = (res * x) % p;
 
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
     
    // Function to find modular inverse
    // of a under modulo p using Fermat's
    // method. Assumption: p is prime
    function modInverse(a, p)
    {
        return power(a, p - 2, p);
    }
     
    // Returns n! % p using
    // Wilson's Theorem
    function modFact(n, p)
    {
     
        // n! % p is 0 if n >= p
        if (p <= n)
            return 0;
 
        // Initialize result as (p-1)!
        // which is -1 or (p-1)
        let res = (p - 1);
 
        // Multiply modulo inverse of all
        // numbers from (n+1) to p
        for (let i = n + 1; i < p; i++)
            res = (res * modInverse(i, p)) % p;
        return res;
    }
     
    let n = 25, p = 29;
    document.write(modFact(n, p));
     
    // This code is contributed by divyeshrabadiya07.
</script>


Output: 

5

Time complexity of this method is O((p-n)*Logn)

Auxiliary Space : O(1) because using only constant variables

Method 4 (Using Primality Test Algorithm) 

1) Initialize: result = 1
2) While n is not prime
    result = (result * n) % p
3) result = (result * (n-1)) % p  // Using Wilson's Theorem 
4) Return result.

Note that time complexity step 2 of above algorithm depends on the primality test algorithm being used and value of the largest prime smaller than n. The AKS algorithm for example takes O(Log 10.5 n) time. 

 



Last Updated : 31 Jul, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads