Given two integer numbers, the task is to find count of all common divisors of given numbers?
Examples :
Input : a = 12, b = 24 Output: 6 // all common divisors are 1, 2, 3, // 4, 6 and 12 Input : a = 3, b = 17 Output: 1 // all common divisors are 1 Input : a = 20, b = 36 Output: 3 // all common divisors are 1, 2, 4
It is recommended to refer all divisors of a given number as a prerequisite of this article.
Naive Solution
A simple solution is to first find all divisors of first number and store them in an array or hash. Then find common divisors of second number and store them. Finally print common elements of two stored arrays or hash. The key is that the magnitude of powers of prime factors of a divisor should be equal to the minimum power of two prime factors of a and b.
- Find the prime factors of a using prime factorization.
- Find the count of each prime factor of a and store it in a Hashmap.
- Prime factorize b using distinct prime factors of a.
- Then the total number of divisors would be equal to the product of (count + 1)
of each factor. - count is the minimum of counts of each prime factors of a and b.
- This gives the count of all divisors of a and b.
C++
// C++ implementation of program #include <bits/stdc++.h> using namespace std; // Map to store the count of each // prime factor of a map< int , int > ma; // Function that calculate the count of // each prime factor of a number void primeFactorize( int a) { for ( int i = 2; i * i <= a; i += 2) { int cnt = 0; while (a % i == 0) { cnt++; a /= i; } ma[i] = cnt; } if (a > 1) { ma[a] = 1; } } // Function to calculate all common // divisors of two given numbers // a, b --> input integer numbers int commDiv( int a, int b) { // Find count of each prime factor of a primeFactorize(a); // stores number of common divisors int res = 1; // Find the count of prime factors // of b using distinct prime factors of a for ( auto m = ma.begin(); m != ma.end(); m++) { int cnt = 0; int key = m->first; int value = m->second; while (b % key == 0) { b /= key; cnt++; } // Prime factor of common divisor // has minimum cnt of both a and b res *= (min(cnt, value) + 1); } return res; } // Driver code int main() { int a = 12, b = 24; cout << commDiv(a, b) << endl; return 0; } // This code is contributed by divyeshrabadiya07 |
Java
// Java implementation of program import java.util.*; import java.io.*; class GFG { // map to store the count of each prime factor of a static HashMap<Integer, Integer> ma = new HashMap<>(); // method that calculate the count of // each prime factor of a number static void primeFactorize( int a) { for ( int i = 2 ; i * i <= a; i += 2 ) { int cnt = 0 ; while (a % i == 0 ) { cnt++; a /= i; } ma.put(i, cnt); } if (a > 1 ) ma.put(a, 1 ); } // method to calculate all common divisors // of two given numbers // a, b --> input integer numbers static int commDiv( int a, int b) { // Find count of each prime factor of a primeFactorize(a); // stores number of common divisors int res = 1 ; // Find the count of prime factors of b using // distinct prime factors of a for (Map.Entry<Integer, Integer> m : ma.entrySet()) { int cnt = 0 ; int key = m.getKey(); int value = m.getValue(); while (b % key == 0 ) { b /= key; cnt++; } // prime factor of common divisor // has minimum cnt of both a and b res *= (Math.min(cnt, value) + 1 ); } return res; } // Driver method public static void main(String args[]) { int a = 12 , b = 24 ; System.out.println(commDiv(a, b)); } } |
Python3
# Python3 implementation of program import math # Map to store the count of each # prime factor of a ma = {} # Function that calculate the count of # each prime factor of a number def primeFactorize(a): sqt = int (math.sqrt(a)) for i in range ( 2 , sqt, 2 ): cnt = 0 while (a % i = = 0 ): cnt + = 1 a / = i ma[i] = cnt if (a > 1 ): ma[a] = 1 # Function to calculate all common # divisors of two given numbers # a, b --> input integer numbers def commDiv(a, b): # Find count of each prime factor of a primeFactorize(a) # stores number of common divisors res = 1 # Find the count of prime factors # of b using distinct prime factors of a for key, value in ma.items(): cnt = 0 while (b % key = = 0 ): b / = key cnt + = 1 # Prime factor of common divisor # has minimum cnt of both a and b res * = ( min (cnt, value) + 1 ) return res # Driver code a = 12 b = 24 print (commDiv(a, b)) # This code is contributed by Stream_Cipher |
C#
// C# implementation of program using System; using System.Collections.Generic; class GFG{ // Map to store the count of each // prime factor of a static Dictionary< int , int > ma = new Dictionary< int , int >(); // Function that calculate the count of // each prime factor of a number static void primeFactorize( int a) { for ( int i = 2; i * i <= a; i += 2) { int cnt = 0; while (a % i == 0) { cnt++; a /= i; } ma.Add(i, cnt); } if (a > 1) ma.Add(a, 1); } // Function to calculate all common // divisors of two given numbers // a, b --> input integer numbers static int commDiv( int a, int b) { // Find count of each prime factor of a primeFactorize(a); // Stores number of common divisors int res = 1; // Find the count of prime factors // of b using distinct prime factors of a foreach (KeyValuePair< int , int > m in ma) { int cnt = 0; int key = m.Key; int value = m.Value; while (b % key == 0) { b /= key; cnt++; } // Prime factor of common divisor // has minimum cnt of both a and b res *= (Math.Min(cnt, value) + 1); } return res; } // Driver code static void Main() { int a = 12, b = 24; Console.WriteLine(commDiv(a, b)); } } // This code is contributed by divyesh072019 |
Output:
6
Efficient Solution –
A better solution is to calculate the greatest common divisor (gcd) of given two numbers, and then count divisors of that gcd.
C++
// C++ implementation of program #include <bits/stdc++.h> using namespace std; // Function to calculate gcd of two numbers int gcd( int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // Function to calculate all common divisors // of two given numbers // a, b --> input integer numbers int commDiv( int a, int b) { // find gcd of a, b int n = gcd(a, b); // Count divisors of n. int result = 0; for ( int i = 1; i <= sqrt (n); i++) { // if 'i' is factor of n if (n % i == 0) { // check if divisors are equal if (n / i == i) result += 1; else result += 2; } } return result; } // Driver program to run the case int main() { int a = 12, b = 24; cout << commDiv(a, b); return 0; } |
Java
// Java implementation of program class Test { // method to calculate gcd of two numbers static int gcd( int a, int b) { if (a == 0 ) return b; return gcd(b % a, a); } // method to calculate all common divisors // of two given numbers // a, b --> input integer numbers static int commDiv( int a, int b) { // find gcd of a, b int n = gcd(a, b); // Count divisors of n. int result = 0 ; for ( int i = 1 ; i <= Math.sqrt(n); i++) { // if 'i' is factor of n if (n % i == 0 ) { // check if divisors are equal if (n / i == i) result += 1 ; else result += 2 ; } } return result; } // Driver method public static void main(String args[]) { int a = 12 , b = 24 ; System.out.println(commDiv(a, b)); } } |
Python3
# Python implementation of program from math import sqrt # Function to calculate gcd of two numbers def gcd(a, b): if a = = 0 : return b return gcd(b % a, a) # Function to calculate all common divisors # of two given numbers # a, b --> input integer numbers def commDiv(a, b): # find GCD of a, b n = gcd(a, b) # Count divisors of n result = 0 for i in range ( 1 , int (sqrt(n)) + 1 ): # if i is a factor of n if n % i = = 0 : # check if divisors are equal if n / i = = i: result + = 1 else : result + = 2 return result # Driver program to run the case if __name__ = = "__main__" : a = 12 b = 24 ; print (commDiv(a, b)) |
C#
// C# implementation of program using System; class GFG { // method to calculate gcd // of two numbers static int gcd( int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // method to calculate all // common divisors of two // given numbers a, b --> // input integer numbers static int commDiv( int a, int b) { // find gcd of a, b int n = gcd(a, b); // Count divisors of n. int result = 0; for ( int i = 1; i <= Math.Sqrt(n); i++) { // if 'i' is factor of n if (n % i == 0) { // check if divisors are equal if (n / i == i) result += 1; else result += 2; } } return result; } // Driver method public static void Main(String[] args) { int a = 12, b = 24; Console.Write(commDiv(a, b)); } } // This code contributed by parashar. |
PHP
<?php // PHP implementation of program // Function to calculate // gcd of two numbers function gcd( $a , $b ) { if ( $a == 0) return $b ; return gcd( $b % $a , $a ); } // Function to calculate all common // divisors of two given numbers // a, b --> input integer numbers function commDiv( $a , $b ) { // find gcd of a, b $n = gcd( $a , $b ); // Count divisors of n. $result = 0; for ( $i = 1; $i <= sqrt( $n ); $i ++) { // if 'i' is factor of n if ( $n % $i == 0) { // check if divisors // are equal if ( $n / $i == $i ) $result += 1; else $result += 2; } } return $result ; } // Driver Code $a = 12; $b = 24; echo (commDiv( $a , $b )); // This code is contributed by Ajit. ?> |
Output :
6
Time complexity: O(log(n)+ n1/2) where n is the gcd of two numbers.
This article is contributed by Shashank Mishra ( Gullu ). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.