Skip to content
Related Articles

Related Articles

Combining DataFrames with Pandas
  • Last Updated : 11 Dec, 2020
GeeksforGeeks - Summer Carnival Banner

Pandas DataFrame consists of three principal components, the data, rows, and columns. To combine these DataFrames, pandas provides multiple functions like concat() and append().

Method #1: Using concat() method

Initially, creating two datasets and converting them into dataframes. 

Python3




# import required module
import pandas as pd
  
# making  a dataset
data1 = {
    'Serial_No.': ['1', '2', '3', '4', '5'],
    'First': ['F0', 'F1', 'F2', 'F3', 'F4'],
    'Second': ['S0', 'S1', 'S2', 'S3', 'S4'],
}
  
# creating a dataframe
df1 = pd.DataFrame(data1, columns=['Serial_No.'
                                   'First'
                                   'Second'])
  
# display dataframe
df1
  
  
# making  a dataset
data2 = {
    'Serial_No.': ['6', '7', '8', '9', '10'],
    'First': ['F10', 'F11', 'F12', 'F13', 'F14'],
    'Second': ['S10', 'S11', 'S12', 'S13', 'S14'],
}
  
# creating  a dataset
df2 = pd.DataFrame(data2, columns=['Serial_No.'
                                   'First'
                                   'Second'])
  
# display dataset
df2

Output: 



Now, concatenating the two dataframes, we will use concat() to combine two dataframes. If ignore_index = True the index of df will be in a continuous order. 

Python3




# combining the two dataframes
df = pd.concat([df1, df2], ignore_index=True)
  
# display combined dataframes
df

Output:

Using keys we can specify the labels of the dataframes.

Python3




# we can also separate 2 datasets using keys
frames = [df1, df2]
df_keys = pd.concat(frames, keys=['x', 'y'])
  
# display dataframe
df_keys

Output:



Method #2: Using append() method

Initially, creating two datasets and converting them into dataframes. 

Python3




# import required module
import pandas as pd
  
# making  a dataset
data1 = {
    'Serial_No.': ['1', '2', '3', '4', '5'],
    'First': ['F0', 'F1', 'F2', 'F3', 'F4'],
    'Second': ['S0', 'S1', 'S2', 'S3', 'S4'],
}
  
# creating a dataframe
df1 = pd.DataFrame(data1, columns=['Serial_No.'
                                   'First'
                                   'Second'])
  
# display dataframe
df1
  
  
# making  a dataset
data2 = {
    'Serial_No.': ['6', '7', '8', '9', '10'],
    'First': ['F10', 'F11', 'F12', 'F13', 'F14'],
    'Second': ['S10', 'S11', 'S12', 'S13', 'S14'],
}
  
# creating  a dataset
df2 = pd.DataFrame(data2, columns=['Serial_No.'
                                   'First'
                                   'Second'])
  
# display dataset
df2

Output: 

The dataframe.append() method performs the operation of combining two dataframes similar to that of the contcat() method.

Python3




# combining dataframes
result = df1.append(df2, sort=False, ignore_index=True)
  
# display combined dataframe
result

Output:


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :