Skip to content
Related Articles

Related Articles

Combining a one and a two-dimensional NumPy Array
  • Last Updated : 01 Oct, 2020
GeeksforGeeks - Summer Carnival Banner

Sometimes we need to combine 1-D and 2-D arrays and display their elements. Numpy has a function named as numpy.nditer(), which provides this facility.

Syntax: numpy.nditer(op, flags=None, op_flags=None, op_dtypes=None, order=’K’, casting=’safe’, op_axes=None, itershape=None, buffersize=0)

Example 1:

Python3




# importing Numpy package 
import numpy as np
  
num_1d = np.arange(5)
print("One dimensional array:")
print(num_1d)
  
num_2d = np.arange(10).reshape(2,5)
print("\nTwo dimensional array:")
print(num_2d)
  
# Combine 1-D and 2-D arrays and display 
# their elements using numpy.nditer() 
for a, b in np.nditer([num_1d, num_2d]):
    print("%d:%d" % (a, b),)

Output:



One dimensional array:
[0 1 2 3 4]

Two dimensional array:
[[0 1 2 3 4]
 [5 6 7 8 9]]
0:0
1:1
2:2
3:3
4:4
0:5
1:6
2:7
3:8
4:9

Example 2:

Python3




# importing Numpy package 
import numpy as np
  
num_1d = np.arange(7)
print("One dimensional array:")
print(num_1d)
  
num_2d = np.arange(21).reshape(3,7)
print("\nTwo dimensional array:")
print(num_2d)
  
# Combine 1-D and 2-D arrays and display 
# their elements using numpy.nditer() 
for a, b in np.nditer([num_1d, num_2d]):
    print("%d:%d" % (a, b),)

Output:

One dimensional array:
[0 1 2 3 4 5 6]

Two dimensional array:
[[ 0  1  2  3  4  5  6]
[ 7  8  9 10 11 12 13]
[14 15 16 17 18 19 20]]
0:0
1:1
2:2
3:3
4:4
5:5
6:6
0:7
1:8
2:9
3:10
4:11
5:12
6:13
0:14
1:15
2:16
3:17
4:18
5:19
6:20

Example 3:

Python3




# importing Numpy package 
import numpy as np
  
num_1d = np.arange(2)
print("One dimensional array:")
print(num_1d)
  
num_2d = np.arange(12).reshape(6,2)
print("\nTwo dimensional array:")
print(num_2d)
  
# Combine 1-D and 2-D arrays and display
# their elements using numpy.nditer() 
for a, b in np.nditer([num_1d, num_2d]):
    print("%d:%d" % (a, b),)

Output:

One dimensional array:
[0 1]

Two dimensional array:
[[ 0  1]
[ 2  3]
[ 4  5]
[ 6  7]
[ 8  9]
[10 11]]
0:0
1:1
0:2
1:3
0:4
1:5
0:6
1:7
0:8
1:9
0:10
1:11

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :