# Closest greater element for every array element from another array

Given two arrays a[] and b[], we need to build an array c[] such that every element c[i] of c[] contains a value from a[] which is greater than b[i] and is closest to b[i]. If a[] has no greater element than b[i], then value of c[i] is -1. All arrays are of same size.

Examples:

Input : a[] = [ 2, 6, 5, 7, 0] b[] = [1, 3, 2, 5, 8] Output : c[] = [2, 5, 5, 7, -1] Input : a[] = [ 2, 6, 5, 7, 0] b[] = [0, 2, 3, 5, 1] Output : c[] = [2, 5, 5, 6, 2]

**Naive Approach :** For each element in b[], we traverse the whole of a[] and try to find the closest greater element, and save the result for each search. This will cost time complexity of O(n^2).

**Efficient Approach :** Sort the array a[], and for each b[i], apply binary search in sorted array a[]. For this method our time complexity will be O(nlogn).

**Note:** For closest greater element we can use upper_bound().

Below is the implementation.

## C++

`// CPP to find result from target array ` `// for closest element ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function for printing resultant array ` `void` `closestResult(` `int` `a[], ` `int` `b[], ` `int` `n) ` `{ ` ` ` `// change arr[] to vector ` ` ` `vector<` `int` `> vect(a, a + n); ` ` ` ` ` `// sort vector for ease ` ` ` `sort(vect.begin(), vect.end()); ` ` ` ` ` `// iterator for upper_bound ` ` ` `vector<` `int` `>::iterator up; ` ` ` ` ` `// vector for result ` ` ` `vector<` `int` `> c; ` ` ` ` ` `// calculate resultant array ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` ` ` `// check upper bound element ` ` ` `up = upper_bound(vect.begin(), vect.end(), b[i]); ` ` ` ` ` `// if no element found push -1 ` ` ` `if` `(up == vect.end()) ` ` ` `c.push_back(-1); ` ` ` ` ` `// Else push the element ` ` ` `else` ` ` `c.push_back(*up); ` `// add to resultant ` ` ` `} ` ` ` ` ` `cout << ` `"Result = "` `; ` ` ` `for` `(` `auto` `it = c.begin(); it != c.end(); it++) ` ` ` `cout << *it << ` `" "` `; ` `} ` ` ` `// driver program ` `int` `main() ` `{ ` ` ` `int` `a[] = { 2, 5, 6, 1, 8, 9 }; ` ` ` `int` `b[] = { 2, 1, 0, 5, 4, 9 }; ` ` ` `int` `n = ` `sizeof` `(a) / ` `sizeof` `(a[0]); ` ` ` `closestResult(a, b, n); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Python3

`# Python implementation to find result ` `# from target array for closest element ` ` ` `import` `bisect ` ` ` `# Function for printing resultant array ` `def` `closestResult(a, b, n): ` ` ` ` ` `# sort list for ease ` ` ` `a.sort() ` ` ` ` ` `# list for result ` ` ` `c ` `=` `[] ` ` ` ` ` `# calculate resultant array ` ` ` `for` `i ` `in` `range` `(n): ` ` ` ` ` `# check location of upper bound element ` ` ` `up ` `=` `bisect.bisect_right(a, b[i]) ` ` ` ` ` `# if no element found push -1 ` ` ` `if` `up ` `=` `=` `n: ` ` ` `c.append(` `-` `1` `) ` ` ` ` ` `# else puch the element ` ` ` `else` `: ` ` ` `c.append(a[up]) ` `# add to resultant ` ` ` ` ` `print` `(` `"Result = "` `, end ` `=` `"") ` ` ` `for` `i ` `in` `c: ` ` ` `print` `(i, end ` `=` `" "` `) ` ` ` ` ` `# Driver code ` `if` `__name__ ` `=` `=` `"__main__"` `: ` ` ` `a ` `=` `[` `2` `,` `5` `,` `6` `,` `1` `,` `8` `,` `9` `] ` ` ` `b ` `=` `[` `2` `,` `1` `,` `0` `,` `5` `,` `4` `,` `9` `] ` ` ` `n ` `=` `len` `(a) ` ` ` `closestResult(a, b, n) ` ` ` `# This code is contributed by ` `# sanjeev2552 ` |

*chevron_right*

*filter_none*

**Output:**

Result = 5 2 1 6 5 -1

## Recommended Posts:

- Find closest greater value for every element in array
- Closest greater or same value on left side for every element in array
- Find closest value for every element in array
- Find closest smaller value for every element in array
- Elements greater than the previous and next element in an Array
- Adding elements of an array until every element becomes greater than or equal to k
- Rearrange an array such that every odd indexed element is greater than it previous
- First strictly greater element in a sorted array in Java
- Sum of elements in an array with frequencies greater than or equal to that element
- Minimum element whose n-th power is greater than product of an array of size n
- Find element in a sorted array whose frequency is greater than or equal to n/2.
- Replace each element by the difference of the total size of the array and frequency of that element
- Range Query on array whose each element is XOR of index value and previous element
- Find last element after deleting every second element in array of n integers
- Sum of (maximum element - minimum element) for all the subsets of an array.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.