Clean the string data in the given Pandas Dataframe
As we know, In today’s world data analytics is being used by all sorts of companies out there. While working with data, we can come across any sort of problem which requires an out of the box approach for evaluation. Most of the Data in real life contains the name of entities or other nouns. It might be possible that the names are not in proper format. In this post, we are going to discuss the approaches to clean such data. Suppose we are dealing with the data of an e-commerce based website. The name of the products is not in the proper format. Properly format the data such that the there are no leading and trailing whitespaces as well as the first letters of all products are capital letter. Solution #1: Many times we will come across a situation where we are required to write our own customized function suited for the task at hand.
Python3
# importing pandas as pd import pandas as pd # Create the dataframe df = pd.DataFrame({ 'Date' :[ '10/2/2011' , '11/2/2011' , '12/2/2011' , '13/2/2011' ], 'Product' :[ ' UMbreLla' , ' maTtress' , 'BaDmintoN ' , 'Shuttle' ], 'Updated_Price' :[ 1250 , 1450 , 1550 , 400 ], 'Discount' :[ 10 , 8 , 15 , 10 ]}) # Print the dataframe print (df) |
Output : Now we will writer our own customized function to solve this problem.
Python3
def Format_data(df): # iterate over all the rows for i in range (df.shape[ 0 ]): # reassign the values to the product column # we first strip the whitespaces using strip() function # then we capitalize the first letter using capitalize() function df.iat[i, 1 ] = df.iat[i, 1 ].strip().capitalize() # Let's call the function Format_data(df) # Print the Dataframe print (df) |
Output : Solution #2 : Now we will see a better and efficient approach using Pandas DataFrame.apply() function.
Python3
# importing pandas as pd import pandas as pd # Create the dataframe df = pd.DataFrame({' 'Date' :[ '10/2/2011' , '11/2/2011' , '12/2/2011' , '13/2/2011' ], 'Product' :[ ' UMbreLla' , ' maTtress' , 'BaDmintoN ' , 'Shuttle' ], 'Updated_Price' :[ 1250 , 1450 , 1550 , 400 ], 'Discount' :[ 10 , 8 , 15 , 10 ]}) # Print the dataframe print (df) |
Output : Let’s use the Pandas DataFrame.apply() function to format the Product names in the right format. Inside the Pandas DataFrame.apply() function we will use lambda function.
Python3
# Using the df.apply() function on product column df[ 'Product' ] = df[ 'Product' ]. apply ( lambda x : x.strip().capitalize()) # Print the Dataframe print (df) |
Output :
Please Login to comment...