Class 9 RD Sharma Solutions – Chapter 4 Algebraic Identities- Exercise 4.1 | Set 2
Question 8. If x2 +1/x2 = 79, find the value of x +1/x
Solution:
Given, x2 +1/x2 = 79
Let us take the square of x + 1/x
So, (x + 1/x)2 = (x)2 + (1/x)2 + 2 × (x) × (1/x)
Since, (a + b)2 = a2 + b2 + 2ab
So,
(x + 1/x)2 = 79 + 2
(x + 1/x)2 = 81
x + 1/x = ±9
Hence, the value of x + 1/x is ±9
Question 9. If 9x2 + 25y2 = 181 and xy = -6, find the value of 3x + 5y
Solution:
Given,
9x2 + 25y2 = 181 and xy = -6
Let us take a square of 3x + 5y
(3x + 5y)2 = (3x)2 + (5y)2 + 2 × (3x) × (5y)
Since, (a + b)2 = a2 + b2 + 2ab
So,
(3x + 5y)2 = 9x2 + 25y2 + 30xy
(3x + 5y)2 = 181 + 30(-6)
(3x + 5y)2 = 181 – 180 = 1
So, 3x + 5y = ±1
Hence, the value of 3x + 5y is ±1
Question 10. If 2x + 3y = 8 and xy = 2, find the value of 4x2 + 9y2
Solution:
Given,
2x + 3y = 8 and xy = 2
Let us take a square of 2x + 3y
(2x + 3y)2 = (2x)2 + (3y)2 + 2 × (2x) × (3y)
Since, (a + b)2 = a2 + b2 + 2ab
So,
(2x + 3y)2 = 4x2 + 9y2 + 12xy
(8)2 = 4x2 + 9y2 + 12(2)
64 = 4x2 + 9y2 + 24
4x2 + 9y2 = 40
Hence, the value of 4x2 + 9y2 is 40
Question 11. If 3x -7y = 10 and xy = -1, find the value of 9x2 + 49y2
Solution:
Given,
3x -7y = 10 and xy = -1
Let us take a square of 3x -7y
(3x -7y)2 = (3x)2 + (7y)2 – 2 × (3x) × (7y)
Since, (a – b)2 = a2 + b2 – 2ab
So,
(3x -7y)2 = 9x2 + 49y2 – 42xy
(10)2 = 9x2 + 49y2 – 42(-1)
100 = 9x2 + 49y2 + 42
9x2 + 49y2 = 58
Hence, the value of 9x2 + 49y2 is 58
Question 12. Simplify each of the following products:
(i) (1/2a – 3b)(3b +1/2a)(1/4a2 + 9b2)
(ii) (m +n/7)3 (m-n/7)
(iii) (x/2 -2/5)(2/5 -x/2) -x2 + 2x
(iv) (x2 + x -2)(x2 -x + 2)
(v) (x3 -3x2 -x)(x2 -3x + 1)
(vi) (2x4 -4x2 +1)(2x4 -4x2 -1)
Solution:
i) (1/2a -3b)(3b +1/2a)(1/4a2 + 9b2)
The above expression can be written as, (1/2a -3b)(1/2a +3b)(1/4a2 + 9b2)
We know that, (a + b)(a – b) = a2 – b2
So, [(1/2a)2 -(3b)2](1/4a2 + 9b2) = (1/4a2 -9b2)(1/4a2 + 9b2)
We now conclude it as, (1/4a2)2 – (9b2)2
= 1/16a4 -81b4
Hence, (1/2a -3b)(3b +1/2a)(1/4a2 + 9b2) = 1/16a4 -81b4
ii) (m +n/7)3 (m-n/7)
The above expression can be written as, (m +n/7)2 (m +n/7)(m-n/7)
We know that, (a + b)(a – b) = a2 – b2
So, (m +n/7)2 [(m)2 -(n/7)2]
= (m +n/7)2 (m2 -n2/49)
Hence, (m +n/7)3 (m-n/7) = (m +n/7)2 (m2 -n2/49)
iii) (x/2 -2/5)(2/5 -x/2) -x2 + 2x
The above expression can be written as, [-(x/2 -2/5)(x/2 -2/5)] -x2 + 2x
= [-(x/2 -2/5)2] -x2 + 2x
We know that, (a -b)2 = a2 – 2ab + b2
So, -(x2/4 + 4/25 -2x/5) -x2 + 2x
= -x2/4 -4/25 + 2x/5 -x2 + 2x = -5x2/4 + 12x/5 -4/25
Hence, (x/2 -2/5)(2/5 -x/2) -x2 + 2x = -5x2/4 + 12x/5 -4/25
iv) (x2 + x -2)(x2 -x + 2)
The above expression can be written as, [x2 + (x -2)][x2 -(x -2)]
We know that, (a + b)(a – b) = a2 – b2
So, (x2)2 -(x -2)2
= x4 -(x2 + 4 -4x)
= x4 -x2 -4 + 4x
Hence, (x2 + x -2)(x2 -x + 2) = x4 -x2 -4 + 4x
v) (x3 -3x2 -x)(x2 -3x + 1)
The above expression can be written as, x(x2 -3x -1)(x2 -3x + 1)
= x[(x2 -3x) -1][(x2 -3x) + 1]
We know that, (a + b)(a – b) = a2 – b2
= x [(x2 -3x)2 -12]
= x[x4 + 9x2 -6x3 -1] = x5 + 9x3 -6x4 -x
Hence, (x3 -3x2 -x)(x2 -3x + 1) = x5 + 9x3 -6x4 -x
vi) (2x4 -4x2 +1)(2x4 -4x2 -1)
The above expression can be written as, [(2x4 -4x2)+1][(2x4 -4x2) -1]
We know that, (a + b)(a – b) = a2 – b2
So, (2x4 -4x2)2 -12
= 4x8 + 16x4 -16x6 -1
Hence, (2x4 -4x2 +1)(2x4 -4x2 -1) = 4x8 + 16x4 -16x6 -1
Question 13. Prove that a2 + b2 + c2 – ab – bc – ca is always non-negative for all values of a, b and c.
Solution:
In order to prove the given expression,
First Multiply and Divide a2 + b2 + c2 – ab – bc – ca by 2
= 1/2[2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca]
= 1/2[a2 + b2 + c2 +a2 + b2 + c2 – 2ab – 2bc – 2ca]
= 1/2[a2 + b2 -2ab + b2 + c2 -2bc + c2 +a2 -2ac]
= 1/2[(a -b)2 + (b -c)2 + (c -a)2]
As we can clearly see the above expression is sum of square terms which will always be positive.
Hence, a2 + b2 + c2 – ab – bc – ca is always non-negative for all values of a, b and c is proved
Please Login to comment...