Question 1. Assuming that x, y, z are positive real numbers, simplify each of the following:
(i) 
Solution:
We have,
= 
= 
= 
= 
(ii) 
Solution:
We have,
= 
= 
= 
(iii) 
Solution:
We have,
= 
= 
= 
(iv)
Solution:
We have,
= 
= 
= 
= 
= 
(v) ![Rendered by QuickLaTeX.com \sqrt[5]{243x^{10}y^5z^{10}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-a93a1c135db47a548f476a25c7a9bd34_l3.png)
Solution:
We have,
= ![Rendered by QuickLaTeX.com \sqrt[5]{243x^{10}y^5z^{10}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-a93a1c135db47a548f476a25c7a9bd34_l3.png)
= 
= 
= 3 x2 y z2
(vi) 
Solution:
We have,
= 
= 
= 
= 
(vii) 
Solution:
We have,
= 
= 
= 
= 
Question 2. Simplify
(i)
Solution:
We have,
= 
= 
= 
= 
(ii) ![Rendered by QuickLaTeX.com \sqrt[5]{(32)^{-3}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-44358da979b65226f5e3f2b680d053b6_l3.png)
Solution:
We have,
= ![Rendered by QuickLaTeX.com \sqrt[5]{(32)^{-3}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-44358da979b65226f5e3f2b680d053b6_l3.png)
= 
= 2−3
= 
(iii) ![Rendered by QuickLaTeX.com \sqrt[3]{(343)^{-2}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-3f7df08e4ea13ce4b7403747a00ca0d8_l3.png)
Solution:
We have,
= ![Rendered by QuickLaTeX.com \sqrt[3]{(343)^{-2}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-3f7df08e4ea13ce4b7403747a00ca0d8_l3.png)
= 
= 7−2
= 
(iv) 
Solution:
We have,
= 
= 
= 
= 0.1
(v) 
Solution:
We have,
= 
= 
= 
= 
= 
(vi)
Solution:
We have,
= 
= 
= 
= 
= 
(vii) 
Solution:
We have,
= 
= 
= 
= 52 × 7
= 175
Question 3. Prove that
(i) ![Rendered by QuickLaTeX.com (\sqrt{3×5^{-3}}÷\sqrt[3]{3^{-1}}\sqrt{5})×\sqrt[6]{3×5^6}=\frac{3}{5}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-bb68981e6aa90601906cfa71ecffbed7_l3.png)
Solution:
We have,
L.H.S. = ![Rendered by QuickLaTeX.com (\sqrt{3×5^{-3}}÷\sqrt[3]{3^{-1}}\sqrt{5})×\sqrt[6]{3×5^6}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-04b9bb21bdd7b9566644f76fa94f50df_l3.png)
= 
= 
= 
= 
= 
= 
= R.H.S.
Hence proved.
(ii) 
Solution:
We have,
L.H.S. = 
= 
= 
= 27 − 3 − 9
= 15
= R.H.S.
Hence proved.
(iii) 
Solution:
We have,
L.H.S. = 
= 
= 
= 
= 
= R.H.S.
Hence proved.
(iv) 
Solution:
We have,
L.H.S. = 
= 
= 
= 
= 
= 2 × 1 × 5
= 10
= R.H.S.
Hence proved.
(v) 
Solution:
We have,
L.H.S. = 
= 
= 
= 
= R.H.S.
Hence proved.
(vi) 
Solution:
We have,
L.H.S. = 
= ![Rendered by QuickLaTeX.com \frac{2^n[1+2^{-1}]}{2^n[2-1]}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-d33eb10484725c5f6f91a4b200013dff_l3.png)
= 1 + 
= 
= R.H.S.
Hence proved.
(vii) ![Rendered by QuickLaTeX.com \left(\frac{64}{125}\right)^{\frac{-2}{3}}+\frac{1}{(\frac{256}{625})^{\frac{1}{4}}}+\left(\frac{\sqrt{25}}{\sqrt[3]{64}}\right)^0=\frac{61}{16}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-f359259b7bc3551a127fc7a5f84593ec_l3.png)
Solution:
We have,
L.H.S. = 
= 
= 
= 
= R.H.S.
Hence proved.
(viii) ![Rendered by QuickLaTeX.com \frac{3^{-3}×6^2×\sqrt{98}}{5^2×\sqrt[3]{\frac{1}{25}}×(15)^{\frac{-4}{3}}×3^{\frac{1}{3}}}=28\sqrt{2}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-a35c7a2806ef269a818d13a8345c6ce9_l3.png)
Solution:
We have,
L.H.S. = ![Rendered by QuickLaTeX.com \frac{3^{-3}×6^2×\sqrt{98}}{5^2×\sqrt[3]{\frac{1}{25}}×(15)^{\frac{-4}{3}}×3^{\frac{1}{3}}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-e637addc0eed93605cfbe6a77029e3e0_l3.png)
= 
= 
= 
= 
= 28√2
= R.H.S.
Hence proved.
(ix)
Solution:
We have,
L.H.S. = 
= 
= 
= 
= 
= R.H.S.
Hence proved.
Question 4. Show that
(i) 
Solution:
We have,
L.H.S. = 
= 
= 
= 
= 1
= R.H.S.
Hence proved.
(ii) ![Rendered by QuickLaTeX.com \left[\left(\frac{x^{a(a-b)}}{x^{a(a+b)}}\right)÷\left(\frac{x^{b(b-a)}}{x^{b(b+a)}}\right)\right]^{a+b}=1](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-3822dfe3c4fb018c9f455d315ed67219_l3.png)
Solution:
We have,
L.H.S. = ![Rendered by QuickLaTeX.com \left[\left(\frac{x^{a(a-b)}}{x^{a(a+b)}}\right)÷\left(\frac{x^{b(b-a)}}{x^{b(b+a)}}\right)\right]^{a+b}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-c250bfac90c1fafbf8d0286a2f486f7c_l3.png)
= ![Rendered by QuickLaTeX.com \left[\left(\frac{x^{a^2-ab}}{x^{a^2+ab}}\right)÷\left(\frac{x^{b^2-ab}}{x^{b^2+ab}}\right)\right]^{a+b}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-6105072b555f60736fdbde38e0cff6c2_l3.png)
= ![Rendered by QuickLaTeX.com [x^{(a^2−ab)−(a^2+ab)} ÷ x^{(b^2−ab)−(b^2+ab)}]^{a+b}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-2744d2e60bbadba56f293ad8a23e506d_l3.png)
= [x-2ab-(-2ab)]a+b
= [x0]a+b
= x0
= 1
= R.H.S.
Hence proved.
(iii) 
Solution:
We have,
L.H.S. = 
= 
= 
= 
= x0
= 1
= R.H.S.
Hence proved.
(iv) 
Solution:
We have,
L.H.S. = 
= 
= 
= 
= R.H.S.
Hence proved.
(v) (xa-b)a+b (xb-c)b+c (xc-a)c+a = 1
Solution:
We have,
L.H.S. = (xa-b)a+b (xb-c)b+c (xc-a)c+a
= 
= 
= x0
= 1
= R.H.S.
Hence proved.
(vi) ![Rendered by QuickLaTeX.com \left[(x^{a-a^{-1}})^{\frac{1}{a-1}}\right]^{\frac{a}{a+1}}=x](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-a22fff441eaff54b0f93c5e824bc1f24_l3.png)
Solution:
We have,
L.H.S. = ![Rendered by QuickLaTeX.com \left[(x^{a-a^{-1}})^{\frac{1}{a-1}}\right]^{\frac{a}{a+1}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-d4b6c7ff42b26c121328b5842f1ccab1_l3.png)
= ![Rendered by QuickLaTeX.com \left[x^{\frac{a(a-a^{-1})}{a^2-1}}\right]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-36940ea397cfcf6ace7d6bbd080b1c3d_l3.png)
= 
= x
= R.H.S.
Hence proved.
(vii) ![Rendered by QuickLaTeX.com \left[\frac{a^{x+1}}{a^{y+1}}\right]^{x+y}\left[\frac{a^{y+2}}{a^{z+2}}\right]^{y+z}\left[\frac{a^{z+3}}{a^{z+3}}\right]^{x+z}=1](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-c697294879397f74f8c4746990709769_l3.png)
Solution:
We have,
L.H.S. = ![Rendered by QuickLaTeX.com \left[\frac{a^{x+1}}{a^{y+1}}\right]^{x+y}\left[\frac{a^{y+2}}{a^{z+2}}\right]^{y+z}\left[\frac{a^{z+3}}{a^{z+3}}\right]^{x+z}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-a679ca701be081d04ebabdecdbb0aaf5_l3.png)
= (ax-y)x+y (ay-z)y+z (ax-z)x+z
= 
= 
= a0
= 1
= R.H.S.
Hence proved.
(viii) ![Rendered by QuickLaTeX.com \left[\frac{3^a}{3^b}\right]^{a+b}\left[\frac{3^b}{3^c}\right]^{b+c}\left[\frac{3^c}{3^a}\right]^{c+a}=1](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-9e7429ec05818b8faf9dc1ea9a99c0de_l3.png)
Solution:
We have,
L.H.S. = ![Rendered by QuickLaTeX.com \left[\frac{3^a}{3^b}\right]^{a+b}\left[\frac{3^b}{3^c}\right]^{b+c}\left[\frac{3^c}{3^a}\right]^{c+a}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-0fd107ec16141db04d55462b4f1676f9_l3.png)
= (3a-b)a+b (3b-c)b+c (3c-a)c+a
= 
= 
= 30
= 1
= R.H.S.
Hence proved.
Question 5. If 2x = 3y = 12z, show that 1/z = 1/y + 2/x.
Solution:
We are given,
=> 2x = 3y = 12z = k (say)
So, we get,
=> 12 = k1/z
=> 2 × 3 × 2 = k1/z
=> 22 × 3 = k1/z
=> (k1/x)2 × (k)1/y = k1/z
=> (k)2/x × (k)1/y = k1/z
=>
= k1/z
=> 2/x + 1/y = 1/z
Hence proved.
Question 6. If 2x = 3y = 6−z, show that 1/x + 1/y + 1/z = 0.
Solution:
We are given,
=> 2x = 3y = 6−z = k (say)
So, we get,
=> 6 = k-1/z
=> (2 × 3) = k-1/z
=> k1/x × k1/y = k-1/z
=>
= k-1/z
=> 1/x + 1/y = −1/z
=> 1/x + 1/y + 1/z = 0
Hence proved.
Question 7. If ax = by = cz and b2 = ac, then show that y = 2zx/(z+x).
Solution:
We are given,
=> ax = by = cz = k (say)
=> a = k1/x, b = k1/y, c = k1/z
We are given, b2 = ac
=> (k1/y)2 = k1/x × k1/z
=> k2/y = 
=> 2/y = 1/x + 1/z
=> 2/y = (x+z)/xz
=> y = 2zx/(z+x)
Hence proved.
Question 8. If 3x = 5y = (75)z, show that z = xy/(2x+y).
Solution:
We are given,
=> 3x = 5y = (75)z = k (say)
So, we get,
=> 75 = k1/z
=> 3 × 52 = k1/z
=> (k)1/x × (k1/y)2 = k1/z
=> (k)1/x × (k)2/y = k1/z
=>
= k1/z
=> 1/x + 2/y = 1/z
=> (2x+y)/xy = 1/z
=> z = xy/(2x+y)
Hence proved.
Question 9. If (27)x = 9/3x, find x.
Solution:
We are given,
=> (27)x = 9/3x
=> (33)x = 32/3x
=> 33x = 32−x
=> 3x = 2 − x
=> 4x = 2
=> x = 2/4
=> x = 1/2
Question 10. Find the values of x in each of the following:
(i) 25x ÷ 2x = ![Rendered by QuickLaTeX.com \sqrt[5]{2^{20}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-f68b12dd6f1ec5654a08bb1e94601d1a_l3.png)
Solution:
We have,
=> 25x ÷ 2x = ![Rendered by QuickLaTeX.com \sqrt[5]{2^{20}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-f68b12dd6f1ec5654a08bb1e94601d1a_l3.png)
=> 25x−x = 
=> 24x = 24
=> 4x = 4
=> x = 1
(ii) (23)4 = (22)x
Solution:
We have,
=> (23)4 = (22)x
=> 212 = 22x
=> 2x = 12
=> x = 6
(iii) 
Solution:
We have,
=>
=> 
=> 
=> 
=> 
=> x = 3
(iv) 5x−2 × 32x−3 = 135
Solution:
We have,
=> 5x−2 × 32x−3 = 135
=> 5x−2 × 32x−3 = 5 × 27
=> 5x−2 × 32x−3 = 51 × 33
=> x − 2 = 1 and 2x − 3 = 3
=> x = 3
(v) 2x−7 × 5x−4 = 1250
Solution:
We are given,
=> 2x−7 × 5x−4 = 1250
=> 2x−7 × 5x−4 = 2 × 625
=> 2x−7 × 5x−4 = 2 × 54
=> x − 7 = 1 and x − 4 = 4
=> x = 8
(vi)
Solution:
We have,
=> ![Rendered by QuickLaTeX.com (\sqrt[3]{4})^{2x+\frac{1}{2}}=\frac{1}{32}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-2b9672309abf1794873f4feac1ebae25_l3.png)
=> 
=> 
=> 4x/3 + 1/3 = −5
=> 4x +1 = −15
=> 4x = −16
=> x = −4
(vii) 52x+3 = 1
Solution:
We have,
=> 52x+3 = 1
=> 52x+3 = 50
=> 2x + 3 = 0
=> 2x = −3
=> x = −3/2
(viii) 
Solution:
We have,
=>
=>
= 256 − 81 − 6
=>
= 169
=> 
=> √x = 2
=> x = 4
(ix) 
Solution:
We have,
=> 
=> 
=> 
=> (x+1)/2 = −3
=> x + 1 = −6
=> x = −7
Question 11. If x = 21/3 + 22/3, show that x3 − 6x = 6.
Solution:
Given, x = 21/3 + 22/3
Therefore, x3 = (21/3)3 + (22/3)3 + 3(21/3)(22/3)(21/3 + 22/3)
=> x3 = (21/3)3 + (22/3)3 + 3(21/3)(22/3)(x)
=> x3 = 2 + 4 + 3(2)(x)
=> x3 = 6 + 6x
=> x3 − 6x = 6
Hence proved.
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
30 Apr, 2021
Like Article
Save Article