Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Class 8 NCERT Solutions- Chapter 14 Factorisation – Exercise 14.3

  • Last Updated : 09 Mar, 2021

Question 1. Carry out the following divisions.

(i) 28x4 ÷ 56x

Solution: 

28x4 = 2 × 2 ×7 × x × x × x × x

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

56x = 2 × 2 × 2 × 7 × x



28x4÷ 56x = \frac{(2 * 2 *7 * x * x * x * x)}{(2 * 2 * 2 * 7 * x)}                   (grouping 28x to cancel)

= ½ × x × x × x

= ½ x3

(ii) -36y3 ÷ 9y2

Solution: 

-36y3 = -2 × 2 × 3 × 3 × y × y × y

9y2= 3 × 3 × y × y

-36y3 ÷ 9y2\frac{(-2 * 2 * 3 * 3 * y * y * y)}{(3 * 3  * y * y) }              (grouping 9y2 to cancel)

= -(2 × 2 × y)



= -4y

(iii) 66pq2r3  ÷ 11qr2

Solution: 

66pq2r = 2 × 3 × 11 × p × q × q × r × r × r

11qr2  = 11 × q × r × r

66pq2r3 ÷ 11qr2\frac{(2 * 3 * 11 * p * q * q * r * r * r)}{(11 * q * r * r)}         (grouping 11qr2 to cancel)

= (2 × 3 × p × q × r)

= 6pqr

(iv) 34x3y3z3 ÷ 51xy2z3

Solution: 

34x3y3z3 = 2 × 17 × x × x × x × y × y × y × z × z × z

51xy2z3  = 3 × 17 × x × y × y × z × z × z



34x3y3z3 ÷ 51xy2z3\frac{(2 * 17 * x * x * x * y * y * y * z * z * z)}{(3 * 17 * x * y * y * z * z * z)}     

\frac{(2 * x * x * y )}{(3)}                (grouping 17xy2z3  to cancel)

 \mathbf{\frac{2}{3}}   x2y

(v) 12a8b8 ÷ (-6a6b4)

Solution: 

12a8b8 = 2 × 2 × 3 × a × a × a × a × a × a × a × a × b × b × b × b × b × b × b × b 

-6a6b4 = -2 × 3 × a × a × a × a × a × a × b × b × b × b

12a8b8 ÷ (-6a6b4) = \frac{(2 * 2 * 3 * a * a * a * a * a * a * a * a * b * b * b * b * b * b * b * b)}{(-2 * 3 * a * a * a * a * a * a * b * b * b * b)}

= – (2 × a × a × b × b × b × b)             (grouping 6a6b to cancel)

= -2a2b4

Question 2. Divide the given polynomial by the given monomial.

(i) (5x2  – 6x) ÷ 3x

Solution:



5x2  – 6x = (5 × x × x) – (2 × 3 × x)

= 5x × (x) – 6 × (x)

= x(5x – 6)

3x = 3 × (x)

(5x2 – 6x) ÷ 3x = \frac{x * (5x - 6)}{3 * (x)}      (grouping x to cancel)

\mathbf{\frac{(5x - 6)}{3}}

(ii) (3y8 – 4y6 + 5y4) ÷ y4

Solution:

3y8-4y6+5y4  = y [(3 × y × y × y × y) – (2× 2 × y × y) + (5)]

y4  = (y × y × y × y)

(3y8-4y6+5y4) ÷ y4 \frac{y^4(3y^4-4y^2+5)}{y^4}        (grouping y4  to cancel)



= (3x4-4y2+5 )

(iii) 8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2

Solution:

8 (x3y2z2 + x2y3z2 + x2y2z3 ) = 2 × 2 × 2 × x2y2z2  (x + y + z)

4 x x2y2z2  = 2 × 2 × x2y2z2

8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2\frac{2 * 2 * 2 * x^2y^2z^2 (x+y+z)}{2 * 2 x^2y^2z^2}            (grouping x2y2z2  to cancel)

= 2(x+y+z)

(iv) (x3+2x2+3x) ÷ 2x

Solution:

x3+2x2+3x  = x ×  (x2+2x+3 )

(x3+2x2+3x) ÷ 2x = \frac{x(x^2+2x+3)}{ 2 × x}                 (grouping x  to cancel)

\mathbf{\frac{(x^2+2x+3 )}{ 2}}



(v) (p3q6-p6q3) ÷ p3q3

Solution:

p3q6-p6q3  = p3q3(q3-p3)

(p3q6-p6q3) ÷ p3q3\frac{p^3q^3(q^3-p^3)}{p^3q^3}           (grouping p3q3  to cancel)

= q3– p3

Question 3. Work out the following divisions.

(i) (10x – 25) ÷ 5

Solution:

10x-25 = (5 × 2 × x) – (5 × 5)

= 5(2x-5)

(10x-25) ÷ 5 = \frac{5(2x-5)}{5}      (grouping 5 to cancel)

= (2x – 5)  

(ii) (10x – 25) ÷ (2x – 5)

Solution:

10x-25 = 5(2x-5)

(10x-25)÷(2x-5) = \frac{5(2x-5)}{(2x-5)}               (grouping (2x-5)  to cancel)

= 5

(iii) 10y(6y+21)  ÷ 5(2y+7)

Solution:

10y(6y+21)  = 5 × 2 × y × 3 × (2y+7) 

10y(6y+21) ÷ 5(2y+7) = \frac{5 * 2 * y * 3 * (2y+7)}{5 * (2y+7)}             (grouping 5(2y+7)  to cancel)

= 2 × 3 × y

= 6y

(iv) 9x2y2(3z-24) ÷ 27xy(z-8)

Solution:

9x2y2(3z-24) = 3 × 3 × x2 × y2 × 3 × (z-8)



27xy(z-8) = 3 × 3 × 3 × x × y × (z-8)

9x2y2(3z-24)÷27xy(z-8)= \frac{3 * 3 * 3 * x^2 * y^2 * (z-8)}{3 * 3 * 3 * x * y * (z-8)}          (grouping (27xy(z-8))  to cancel)

 = xy

(v) 96abc(3a-12)(5b-30) ÷ 144 (a-4)(b-6)

Solution:

96abc(3a-12)(5b-30) = 2 × 2 × 2 × 2 × 2 × 3 × a × b × c × 3 × (a-4) × 5 × (b-6)

144(a-4)(b-6) = 2 × 2 × 2 × 2 × 3 × 3 × (a-4) × (b-6)

96abc(3a-12)(5b-30) ÷ 144(a-4)(b-6) = \frac{(2 * 2 * 2 * 2 * 2 * 3 * a * b * c * 3 * (a-4) * 5 * (b-6)) }{ (2 * 2 * 2 *× 2 * 3 * 3 * (a-4) * (b-6))}

 = (2 × 5 × a × b × c)                (grouping (144(a-4)(b-6)) to cancel)

 = 10abc  

Question 4. Divide as directed.

(i) 5(2x+1)(3x+5) ÷ (2x+1)

Solution:

= 5(3x+1)               (grouping (2x+1) to cancel)

(ii) 26xy(x+5)(y-4)÷13x(y-4)

Solution:

26xy(x+5)(y-4) = 2 × 13 × x × y × (x+5) × (y-4)

26xy(x+5)(y-4)÷13x(y-4) = \frac{(2 * 13 * x * y * (x+5) * (y-4))}{ (13 * x * (y-4))}                  (grouping 13x(y-4)  to cancel)

= (2 × y × (x+5))

= 2y(x+5)

(iii) 52pqr(p+q)(q+r)(r+p)÷104pq(q+r)(r+p)

Solution:

52pqr(p+q)(q+r)(r+p)  = 13 × 2 × 2 × pqr(p+q)(q+r)(r+p)

104pq(q+r)(r+p) = 13 × 2 × 2 × 2 × pq(q+r)(r+p)

52pqr(p+q)(q+r)(r+p)÷104pq(q+r)(r+p) = \frac{(13 * 2 * 2 * pqr(p+q)(q+r)(r+p))}{(13 * 2 * 2 * 2 * pq(q+r)(r+p))}          



=  \mathbf{\frac{r(p+q)}{ 2}}                      (grouping (52pq(q+r)(r+p))  to cancel)

(iv) 20(y+4)(y2+5y+3)÷5(y+4)

Solution:

20(y+4)(y2+5y+3) = 2 × 2 × 5 × (y+4) × (y2+5y+3)

20(y+4)(y2+5y+3)÷5(y+4) = \frac{(2 * 2 * 5 * (y+4) * (y^2+5y+3))}{(5(y+4))}             (grouping (5(y+4))  to cancel)

= 2 × 2 × (y2+5y+3)

= 4(y2+5y+3)

(v) x(x+1)(x+2)(x+3) ÷ x(x+1)

Solution:

= (x+2)(x+3)                           (grouping x(x+1)  to cancel)

Question 5. Factorise the expressions and divide them as directed. 

(i) (y2+7y+10) ÷ (y+5)

Solution:

(y2+7y+10) = (y2+5y+2y+10)

 = (y(y+5) + 2(y+5))                                          (2 + 5 = 7  &  2 × 5 = 10)

= (y+5) (y+2)

(y2+7y+10) ÷ (y+5) = \frac{(y+5) (y+2) }{(y+5)}            (grouping (y+5)  to cancel)

= (y+2)

(ii) (m2-14m-32)÷(m+2)

Solution:

(m2-14m-32) =  (m2-16m+2m-32 )

= (m(m-16) + 2(m-16))                                                     (-16 + 2 = -14  &  -16 × 2 = -32)

= (m+2) (m-16)

(m2-14m-32)÷(m+2) = \frac{(m+2) (m-16)}{ (m+2)}                (grouping (m+2)  to cancel)

= (m-16)



(iii) (5p2-25p+20) ÷ (p-1)

Solution:

(5p2-25p+20) = (5p2-20p-5p+20)

=(5p(p-4)-5(p-4))                                                                (-20 – 5 = -25 )

=(5p-5) (p-4)

=5 (p-1) (p-4) 

(5p2-25p+20)÷(p-1) = \frac{5(p-1)(p-4)}{(p-1)}                   (grouping (p-1)  to cancel)

= 5(p-4)

(iv) 4yz(z2+6z-16)÷2y(z+8)

Solution:

4yz(z2+6z-16)  = 2 × 2 × y × z × (z2+8z-2z-16)

 = 2 × 2 × y × z × (z(z+8)-2(z+8))                                                      (8 + (-2) = 6 & 8 × (-2) = -16)

= 2 × 2 × y × z × (z+8) (z-2))

4yz(z2+6z-16) ÷ 2y(z+8) = \frac{(2 * 2 * y * z * (z+8) (z-2))}{(2y(z+8))}       (grouping 2y(z+8)  to cancel)

 = 2 × z × (z-2)

= 2z(z-2)

(v) 5pq(p2-q2)÷2p(p+q)

Solution:

(p2-q2) = (p+q) (p-q)                                                                         (IDENTITY a2-b2 = (a+b)(a-b) )

5pq(p2-q2)÷2p(p+q) = \frac{5pq(p+q)(p-q)}{2p(p+q)}                                   (grouping p(p+q)  to cancel)

 = \mathbf{\frac{5q(p-q)}{2}}

(vi) 12xy(9x2-16y2) ÷ 4xy(3x+4y)

Soln. 

12xy(9x2-16y2) = 2 × 2 × 3 × ((3x)2-(4y)2)



12xy(9x2-16y2) = 2 × 2 × 3 × (3x+4y) (3x-4y)                                                                              (IDENTITY a2-b2 = (a+b)(a-b) )

12xy(9x2-16y2) ÷ 4xy(3x+4y) = \frac{2 * 2 * 3 * (3x+4y) (3x-4y)}{2 * 2 * xy (3x+4y)}                         (grouping 4xy(3x+4y)  to cancel)

 = 3 (3x-4y)

(vii) 39y3(50y2-98) ÷ 26y2(5y+7)

Solution:

39y3(50y2-98) = 3 × 13 × y3 × 2 × (25y2-49)

  = 3 × 13 × y3 × 2 × ((5y)2-(7)2)                                                                                        (IDENTITY a2-b2 = (a+b)(a-b) )

 = 3 × 13 × y3 × 2 × (5y+7) (5y-7)

26y2(5y+7) = 2 × 13 × y2 × (5y+7)

39y3(50y2-98)÷26y2(5y+7) = \frac{(3 * 13 * y^3 * 2 * (5y+7) (5y-7))}{(2 * 13 * y^2 * (5y+7))}      (grouping 26y2(5y+7)  to cancel)

 = (3 × y × (5y-7))

= 3y(5y-7)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!