Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Class 12 RD Sharma Solutions – Chapter 23 Algebra of Vectors – Exercise 23.7

  • Last Updated : 11 Feb, 2021

Question 1. Show that the points A, B, C with position vectors \vec{a}-2\vec{b}+3\vec{c},\ 2\vec{a}+3\vec{b}-4\vec{c} and -7\vec{b}+10\vec{c} are collinear.

Solution: 

Given that, 

Hey! Looking for some great resources suitable for young ones? You've come to the right place. Check out our self-paced courses designed for students of grades I-XII

Start with topics like Python, HTML, ML, and learn to make some games and apps all with the help of our expertly designed content! So students worry no more, because GeeksforGeeks School is now here!

 



Position vector of A=\vec{a}-2\vec{b}+3\vec{c}    

Position vector of B=2\vec{a}+3\vec{b}-4\vec{c}

Position vector of C=-7\vec{b}+10\vec{c}

\overrightarrow{AB}  = Position vector B – Position vector of A

= (2\vec{a}+3\vec{b}-4\vec{c})-(\vec{a}-2\vec{b}+3\vec{c})\\ =2\vec{a}+3\vec{b}-4\vec{c}-\vec{a}+2\vec{b}-3\vec{c}

\vec{a}+5\vec{b}-7\vec{c}

\overrightarrow{BC}  = Position vector of C – Position vector of B

= (-7\vec{b}+10\vec{c})-(2\vec{a}+3\vec{b}-4\vec{c})\\ =-7\vec{b}+10\vec{c}-2\vec{a}-3\vec{b}+4\vec{c}   



-2\vec{a}-10\vec{b}+14\vec{c}

Using \overrightarrow{AB} and \overrightarrow{BC}, we get,

\overrightarrow{BC}=-2\overrightarrow{AB}

So,\overrightarrow{AB}  || \overrightarrow{BC}  but \vec{B}   is a common vector. 

Hence, proved that A, B, C are collinear.

Question 2 (i). If \vec{a},\ \vec{b},\ \vec{c} are non-coplanar vectors, prove that the points having the position vectors \vec{a},\ \vec{b},\ 3\vec{a}-2\vec{b} are collinear.

Solution:

Let us assume three points that are A, B, C

Position vector of A = \vec{a}

Position vector of B = \vec{b}

Position vector of C = 3\vec{a}-2\vec{b}



\overrightarrow{AB}  = Position vector of B – Position vector of A

\vec{b}-\vec{a}            -(1)

\overrightarrow{BC}  = Position vector of C – Position vector of B

=3\vec{a}-2\vec{b}-\vec{b}\\ =3\vec{a}-3\vec{b}            -(2)

Using equation(1) and (2), we get

\overrightarrow{BC}  = λ (\overrightarrow{AB})              -(where λ is a scalar)

3\vec{a}-3\vec{b}=λ(\vec{b}-\vec{a})\\ 3\vec{a}-3\vec{b}=λ\vec{b}-λ\vec{a}\\ 3\vec{a}-3\vec{b}=λ\vec{a}+λ\vec{b}

On comparing the coefficients of LHS and RHS, 

-λ = 3

λ = 3



λ = -3

The value of λ is different

Therefore, points A, B, C are not collinear.

Question 2 (ii) If \vec{a},\ \vec{b},\ \vec{c}  are non-coplanar vectors, prove that the points having the position vectors \vec{a}+\vec{b}+\vec{c},\ 4\vec{a}+3\vec{b},\ 10\vec{a}+7\vec{b}-2\vec{c}    are collinear.

Solution:

Let us assume three points that are A, B, C

Position vector of A = \vec{a}+\vec{b}+\vec{c}

Position vector of B = 4\vec{a}+3\vec{b}

Position vector of C = 10\vec{a}+7\vec{b}-2\vec{c}

\overrightarrow{AB}  = Position vector of B – Position vector of A

=(4\vec{a}+3\vec{b})-(\vec{a}+\vec{b}+\vec{c})\\ =4\vec{a}+3\vec{b}-\vec{a}-\vec{b}-\vec{c}\\ \overrightarrow{AB}=3\vec{a}+2\vec{b}-\vec{c}



\overrightarrow{BC}  = Position vector of C – Position vector of B

=(10\vec{a}+7\vec{b}-2\vec{c})-(4\vec{a}+3\vec{b})\\ =10\vec{a}+7\vec{b}-2\vec{c}-4\vec{a}-3\vec{b}\\ \overrightarrow{BC}=6\vec{a}+4\vec{b}-2\vec{c}

By using \overrightarrow{AB} and \overrightarrow{BC}, we get

\overrightarrow{BC}  = 2 (\overrightarrow{AB})     

So, (\overrightarrow{AB})  || (\overrightarrow{BC})  but \vec{B}  is a common vector.

Hence, A, B, C are collinear

Question 3. Prove that the points having position vectors \hat{i}+2\hat{j}+3\hat{k},\ 3\hat{i}+4\hat{j}+7\hat{k},\ -3\hat{i}-2\hat{j}-5\hat{k}    are collinear.

Solution:

Let us considered points A, B, C

Position vector of A = \hat{i}+2\hat{j}+3\hat{k}

Position vector of B = 3\hat{i}+4\hat{j}+7\hat{k}



Position vector of C = -3\hat{i}-2\hat{j}-5\hat{k}

\overrightarrow{AB}  = Position vector of B – Position vector of A

=(3\hat{i}+4\hat{j}+7\hat{k})-(\hat{i}+2\hat{j}+3\hat{k})\\ =3\hat{i}+4\hat{j}+7\hat{k}-\hat{i}-2\hat{j}-3\hat{k}\\ \overrightarrow{AB}=2\hat{i}+2\hat{j}+4\hat{k}

\overrightarrow{BC}  = Position vector of C – Position vector of B

=(-3\hat{i}-2\hat{j}-5\hat{k})-(3\hat{i}+4\hat{j}+7\hat{k})\\ =-3\hat{i}-2\hat{j}-5\hat{k}-3\hat{i}-4\hat{j}-7\hat{k}\\ \overrightarrow{BC}=-6\hat{i}-6\hat{j}-12\hat{k}

By using \overrightarrow{AB} and \overrightarrow{BC}, we get

\overrightarrow{BC}  = -3 (\overrightarrow{AB})     

(\overrightarrow{AB})  || (\overrightarrow{BC})  but \vec{B}  is a common vector.

Hence, A, B, C are collinear

Question 4. If the points with position vectors 10\hat{i}+3\hat{j},\ 12\hat{i}-5\hat{j}\ and\ a\hat{i}+11\hat{j} are collinear, find the value of a.  

Solution:



Let the points be A, B, C

Position vector of A = 10\hat{i}+3\hat{j}

Position vector of B = 12\hat{i}-5\hat{j}

Position vector of C = a\hat{i}+11\hat{j}

Given that, A, B, C are collinear

⇒ \overrightarrow{AB}  and \overrightarrow{BC}   are collinear

⇒ \overrightarrow{AB}  = λ (\overrightarrow{BC})                        -(where λ is same scalar)

⇒ Position vector of B – Position vector of A = λ – (Position vector of C – Position vector of B)

⇒ (12\hat{i}-5\hat{j})-(10\hat{i}+3\hat{j})=λ[(a\hat{i}+11\hat{j})-(12\hat{i}-5\hat{j})]\\ ⇒ 12\hat{i}-5\hat{j}-10\hat{i}-3\hat{j}=λ(a\hat{i}+11\hat{j}-12\hat{i}+5\hat{j})]\\ ⇒ 2\hat{i}-8\hat{j}=(λa-12λ)\hat{i}=(11λ+5λ)\hat{j}

On comparing the coefficients of LHS and RHS, we get



λa – 12λ = 2       -(1) 

-8 = 11λ + 5λ       -(2) 

-8 = 16λ

λ = -8/16

λ = -1/2 

Now, Put the value of λ in eq(1), we get

λa – 12λ = 2

(-1/2)a – 12(-1/2) = 2

-a/2 +6 = 2

-a/2 = 2 – 6

-a/2 = -4

a = 8

So, the value of a is 8.

Question 5. If \vec{a},\ \vec{b} are two non-collinear vectors, prove that the points with position vectors \vec{a}+\vec{b},\ \vec{a}-\vec{b}\ and\ \vec{a}+λ\vec{b} are collinear for all real values of λ.

Solution:

Let us considered points A, B, C

Position vector of A = \vec{a}+\vec{b}

Position vector of B = \vec{a}-\vec{b}

Position vector of C = \vec{a}+λ\vec{b}

\overrightarrow{AB}  = Position vector of B – Position vector of A

=(\vec{a}-\vec{b})-(\vec{a}+\vec{b})\\ =\vec{a}-\vec{b}-\vec{a}-\vec{b}\\ \overrightarrow{AB}=-2\vec{b}



\overrightarrow{BC}  = Position vector of C – Position vector of B

=(\vec{a}+λ\vec{b})-(\vec{a}-\vec{b})\\ =\vec{a}+λ\vec{b}-\vec{a}+\vec{b}\\ =λ\vec{b}+\vec{b}\\ \overrightarrow{BC}=(λ+1)\vec{b}

Using \overrightarrow{AB}  and \overrightarrow{BC}

\overrightarrow{AB}  = \left[\frac{(λ+1)}{-2}\right](\overrightarrow{BC})     

Let \left(\frac{λ+1}{-2}\right)    = μ

Since λ is a real number. So, μ is also a real number.

(\overrightarrow{AB})  || (\overrightarrow{BC})  but \vec{B}  is a common vector.

Hence, A, B, C are collinear.

Question 6. If \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OB}+\overrightarrow{OC} , prove that A, B, C are collinear points

Solution:

According to the question



\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OB}+\overrightarrow{OC}\\ \overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{BO}-\overrightarrow{CO}\\ \overrightarrow{AB}=\overrightarrow{BC}

So, (\overrightarrow{AB})  || (\overrightarrow{BC})  but \vec{B}  is a common vector.

Hence, A, B, C are collinear.

Question 7. Show that the vectors 2\hat{i}-3\hat{j}+4\hat{k}\ and\ -4\hat{i}+6\hat{j}-8\hat{k}    are collinear.

Solution:

Le us considered, the position vector A = 2\hat{i}-3\hat{j}+4\hat{k}

Position vector B = -4\hat{i}+6\hat{j}-8\hat{k}

Let us assume O be the initial point having position vector

0\times\hat{i}+0\times\hat{j}+0\times\hat{k}

\overrightarrow{OA}  = Position vector of A – Position vector of O

=(2\hat{i}-3\hat{j}+4\hat{k})-(0\times\hat{i}+0\times\hat{j}+0\times\hat{k})\\ =2\hat{i}-3\hat{j}+4\hat{k}



\overrightarrow{OB}  = Position vector of B – Position vector of O

=(-4\hat{i}+6\hat{j}-8\hat{k})-(0\times\hat{i}+0\times\hat{j}+0\times\hat{k})\\ =-4\hat{i}+6\hat{j}-8\hat{k}

By u8sing OA and OB, we get

\overrightarrow{OB}=-2(\overrightarrow{OA})

Therefore, \overrightarrow{OA}  || \overrightarrow{OB}  but O is the common point to them.

Hence, A and B are collinear.

Question 8. If the points A(m, -1), B(2, 1), C(4, 5) are collinear, find the value of m.

Solution: 

Let us considered

A = (m, -1)

B = (2, 1)

C = (4, 5)

\overrightarrow{AB}  = Position vector of B – Position vector of A

=(2\hat{i}+\hat{j})-(m\hat{i}-\hat{j})\\ =2\hat{i}+\hat{j}-m\hat{i}+\hat{j}\\ =(2-m)\hat{i}+2\hat{j}

\overrightarrow{BC}  = Position vector of C – Position vector of B

=(4\hat{i}+5\hat{j})-(2\hat{i}+\hat{j})\\ =4\hat{i}+5\hat{j}-2\hat{i}-\hat{j}\\ =2\hat{i}+4\hat{j}

A, B, C are collinear.

So, \overrightarrow{AB}  and \overrightarrow{BC}  are collinear.

So, \overrightarrow{AB}  = λ (\overrightarrow{BC})

(2-m)\hat{i}+2\hat{j}=λ(2\hat{i}+4\hat{j}),\ \ for\ λ\ scalar\\ (2-m)\hat{i}+2\hat{j}=2λ\hat{i}+4λ\hat{j}

On comparing the coefficient of LHS and RHS, we get



2 – m = 2λ

\frac{2-m}{2}=λ             -(1)

2 = 4λ

\frac{2}{4}    = λ

\frac{1}{2}    = λ         -(2)

From eq(1) and (2), we get

\frac{2-m}{2}=\frac{1}{2}

4 – 2m = 2

-2m = 2 – 4

m = \frac{-2}{-2}

m = 1

So, the value of m is 1

Question 9. Show that the points (3, 4), (-5, 16), (5, 1) are collinear.

Solution:

Let su considered 

A = (3, 4)

B = (-5, 16)

C = (5, 1)

\overrightarrow{AB}  = Position vector of B – Position vector of A

=(-5\hat{i}+16\hat{j})-(3\hat{i}+4\hat{j})\\ =-5\hat{i}+16\hat{j}-3\hat{i}-4\hat{j}\\ \overrightarrow{AB}=-8\hat{i}+12\hat{j}

\overrightarrow{BC}  = Position vector of C – Position vector of B

=(5\hat{i}+\hat{j})-(-5\hat{i}+16\hat{j})\\ =5\hat{i}+\hat{j}+5\hat{i}-16\hat{j}\\ \overrightarrow{BC}=10\hat{i}-15\hat{j}

So, 4(\overrightarrow{AB})=-5(\overrightarrow{BC})

\overrightarrow{AB}  ||  \overrightarrow{BC}  but B is a common point.

Hence, A, B, C are collinear.

Question 10. If the vectors \vec{a}=2\hat{i}-3\hat{j}\ and\ \vec{b}=-6\hat{i}+m\hat{j} are collinear, find the value of m.

Solution:

Given: a=2\hat{i}-3\hat{j}  and b=-6\hat{i}+m\hat{j}  are collinear.

So, a = λb

2\hat{i}-3\hat{j}=λ(-6\hat{i}+m\hat{j})\\ 2\hat{i}-3\hat{j}=-6λ\hat{i}+mλ\hat{j}

On comparing the coefficients of LHS and RHS, we get

2 = -6λ



λ = 2/(-6) 

λ = -1/3          -(1)

-3 = λm

λ = -3/m          -(2)

From eq(1) and (2), we have

-1/3 = -3/m

m = 3 × 3

m = 9

So, the value of m is 9

Question 11. Show that the points A(1, -2, -8), B(5, 0, -2) and C(11, 3, 7) are collinear, and find the ratio in which B divides AC.

Solution:

Given: A(1, -2, -8), B(5, 0, -2) and C(11, 3, 7).

\overrightarrow{AB}=(5-1)\hat{i}+(0+2)\hat{j}+(-2+8)\hat{k}=4\hat{i}+2\hat{j}+6\hat{k}\\ \overrightarrow{BC}=(11-5)\hat{i}+(3-0)\hat{j}+(7+2)\hat{k}=6\hat{i}+3\hat{j}+9\hat{k}\\ \overrightarrow{AC}=(11-1)\hat{i}+(3+2)\hat{j}+(7+8)\hat{k}=10\hat{i}+5\hat{j}+15\hat{k}\\ \left|\overrightarrow{AB}\right|=\sqrt{4^2+2^2+6^2}=\sqrt{16+4+36}=\sqrt{56}=2\sqrt{14}\\ \left|\overrightarrow{BC}\right|=\sqrt{6^2+3^2+9^2}=\sqrt{36+9+81}=\sqrt{126}=3\sqrt{14}\\ \left|\overrightarrow{AC}\right|=\sqrt{10^2+5^2+15^2}=\sqrt{100+25+225}=\sqrt{350}=5\sqrt{14}\\ \left|\overrightarrow{AC}\right|=\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|

So the given points are collinear

Now, let us considered point B divide AC in the ratio λ : 1. 

Then

\overrightarrow{OB}=\frac{λ\overrightarrow{OC}+\overrightarrow{OA}}{(λ+1)}

⇒5\hat{i}-2\hat{k}=\frac{λ(11\hat{i}+3\hat{j}+7\hat{k})+(\hat{i}-2\hat{j}-8\hat{k})}{λ+1}\\ ⇒(λ+1)(5\hat{i}-2\hat{k})=11λ\hat{i}+3λ\hat{j}+7λ\hat{k}+\hat{i}-2\hat{j}-8\hat{k}\\ ⇒5(λ+1)\hat{i}-2(λ+1)\hat{k}=(11λ+1)\hat{i}+(3λ-2)\hat{j}+(7λ-8)\hat{k}

5(λ + 1) = 11λ + 1

⇒ 5λ + 5 = 11λ + 1

⇒ 6λ = 4



⇒ λ = \frac{4}{6}=\frac{2}{3}

So, the point B divides AC in the ratio 2 : 3.

Question 12. Using vector show that the points A(-2, 3, 5), B(7, 0, -1) and C(-3, -2, -5) and D(3, 4, 7) are such that AB and CD intersect at the point P(1, 2, 3).

Solution:

According to the question, we have,

\overrightarrow{AP}  = Position vector of P – Position vector of A

\overrightarrow{AP}=\hat{i}+2\hat{j}+3\hat{k}-(-2\hat{i}+3\hat{j}+5\hat{k})=3\hat{i}-\hat{j}-2\hat{k}

\overrightarrow{PB}  = Position vector of B – Position vector of P

\overrightarrow{PB}=7\hat{i}-\hat{k}-(\hat{i}+2\hat{j}+3\hat{k})=6\hat{i}-2\hat{j}-4\hat{k}

Hence, \overrightarrow{PB}=2\overrightarrow{AP} . So, the vectors are collinear.

But P is a point common so, P, A, B are collinear points.

Similarly, \overrightarrow{CP}=\hat{i}+2\hat{j}+3\hat{k}-(-3\hat{i}-2\hat{j}-5\hat{k})=4\hat{i}+4\hat{j}+8\hat{k}\\ \overrightarrow{PD}=3\hat{i}+4\hat{j}+7\hat{k}-(\hat{i}+2\hat{j}+3\hat{k})=2\hat{i}+2\hat{j}+4\hat{k}

\overrightarrow{CP}\ and\ \overrightarrow{PD}  are collinear,

But P is a common point to \overrightarrow{CP}\ and\ \overrightarrow{CD} . So, C, P, D are collinear points.

Hence, AB and CD intersect at the point P.

Question 13. Using vectors, find the value of I such that the points (I, -10, 3), (1, -1, 3), and (3, 5, 3) are collinear.

Solution:

Given: Points (I, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.

Therefore, (I, -10, 3) = x(1, -1, 3) + y(3, 5, 3) for some scalars x and y

I = x + 3y          -(1)

-10 = -x + 5y          -(2) 

3 = 3x + 3y          -(3)

On solving eq(2) and (3), we get,

x = 5/2 and y = -3/2

Now, put the value of x and y in eq(1), we get

I = (5/2) + 3(-3/2)

I = -2

So the value of I is -2




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!