# Class 12 RD Sharma Solutions – Chapter 23 Algebra of Vectors – Exercise 23.3

### Question 1.** ** Find the position vector of a point R which divides the line joining the two points P and Q with position vectors and respectively in the ratio 1:2 internally and externally.

**Solution:**

The point R divides the line joining points P and Q in the ratio 1:2 internally.

The position vector of R = =

Point R divides the line joining P and Q in the ratio 1:2 externally.

The position vector of R =

=

=

### Question 2. Let and be the position vectors of the four distinct points A, B, C, D. If then show that ABCD is a parallelogram.

**Solution: **

Given that are the position vectors of the four distinct points A, B, C, D

such that

Given that,

So, AB is parallel and equal to DC

Hence, ABCD is a parallelogram.

### Question 3.** **If are the position vectors of A, B respectively, find the position vector of a point C in AB produced such that AC = 3AB and that a point D in BA produced such that BD = 2BA.

**Solution: **

Given that are the position vector of A and B

Let C be a point in AB produced such that AC = 3AB.

From the given data we can say that point C divides the line AB in

Ratio 3:2 externally. So, the position vector of point C can be written as

=

=

D be a point in BA produced such that BD = 2BA

It is clear that point D divides the line in 1:2 externally.

Then the position vector can be written as

=

Hence and

### Question 4.** **Show that the four points A, B, C, D with position vectors and respectively such that are coplanar. Also, find the position vector of the point of intersection of the lines AC and BD.

**Solution:**

Given that

Sum of the coefficients on both sides of the given equation is 8

so, divide the equation by 8 on both the sides

It is clear that the position vector of a point P dividing Ac in the

Ratio 3:5 is same as that of point P diving BD in the ratio 2:6.

Point P is common to AC and BD. Hence, P is the point of intersection of AC and BD.

Therefore, A, B, C and D are coplanar.

The position vector of point P can be written as

or

### Question 5: ** **Show that the four points P, Q, R, S with position vectors and respectively such that are coplanar. Also, find the position vector of the point of intersection of the lines PR and QS.

**Solution:**

Given that

Here and

are the position vectors of point P, Q, R, S

-(1)

Sum of the coefficients on both the sides of the equation (1) is 11.

So divide the equation (1) by 11 on both sides.

It shows that position vector of a point A dividing PR in the ratio of 6:5 and

QS in the ratio 9:2. So A is the common point to PR and QS.

Therefore, P, Q, R and S are coplanar.

The position vector of point A is given by

or

### Question 6:** **The vertices A, B, C of triangle ABC have respectively position vectors with respect to a given origin O. Show that the point D where the bisector of meets BC has position vector where . Hence deduce that the incentre I has position vector where

**Solution: **

Let ABC be a triangle and the position vectors of A, B, C with respect to some origin say O be

Let D be the point on BC where the bisector of meets.

be the position vector of D which divides BC internally in the ratio

and where

Thus,

Therefore, by section formula, the position vector of D is given by

Let

Incentre is the concurrent point of angle bisectors.

Thus, Incentre divides the line AD in the ratio and

the position vector of incentre is equal to

Attention reader! All those who say programming isn’t for kids, just haven’t met the right mentors yet. Join the ** Demo Class for First Step to Coding Course, **specifically **designed for students of class 8 to 12. **

The students will get to learn more about the world of programming in these **free classes** which will definitely help them in making a wise career choice in the future.