GeeksforGeeks App
Open App
Browser
Continue

## Related Articles

• RD Sharma Class 12 Solutions for Maths

# Class 12 RD Sharma Solutions- Chapter 20 Definite Integrals – Exercise 20.4 Part B

### Question 1.

Solution:

We have,

Let

—— 1

So,,

———— 2

Hence, by adding 1 and 2 ..

Solution:

We have,

Let, I=—– 1

So,—— 2

Solution:

We have ,

Let,

So,

————— 2

Solution:

Let,—— 1

———- 2

Solution:

Let,———– (1)

So,

Solution:

———- 1

—– 2

Solution:

Let,

Let,

Now, x=0 ,, then

——————– 1

So,

————- 2

Solution:

Let,

then

———— (1)

——————- (2)

Solution:

Let,

### Question 10.

Solution:

Let,

Equating coefficients, we get

So,

Solution:

————- (1)

—————— (2)

### Question 12.

Solution:

Let ,————– 1

So,

Let,

As, x=0, t=1 ; x=π , t=-1

Hence,

Solution:

Let,

### Question 14.

Solution:

we have,

=

Since, f(x) = f(-x) , f(x) is an even function.

————– 1

—————- 2

Now, let

Putting 2x=t, we get

Solution:

Let,

### Question 16.

Solution:

We have , I=\int\limits_0^{π} \frac{x}{1+cos\alpha sinx}dx ———- 1

[Tex]=\int\limits_0^{π} \frac{(π-x)}{1+cos\alpha sinx}dx [/Tex]——- 2

substituting s

when x=0 , t=0 ; x=π ,

Solution:

Let,

Solution:

Solution:

Solution:

### Question 21.

Solution:

Now,

Let cosx=t

sinx dx=-dt

[Tex]I= \frac{π }{8}[\fracπ 4+\fracπ 4] dt[/Tex]

Solution:

—————— 1

———— 2

Let ,

### Question 23.

Solution:

Let,

Here, f(x)=-f(x)

Hence, f(x) is odd function

### Question 24.

Solution:

We have,  is an even function.

### Question 25.

Solution:

we have,

Since,

this is an odd function

### Question 26.

Solution:

we have,

sin2x is even function

Hence,

Solution:

Solution:

we have ,

Let,

Then,

### Question 29.

Solution:

Put cosx = t then -sinx dx = dt

### Question 30.

Solution:

Let

is an odd function

Solution:

### Question 32.

Solution:

Substitute π+x=u then dx=du

Solution:

Let,

### Question 34.

Solution:

Applying the property ,

Thus,

Solution:

Let,

### Question 36.

Solution:

[Tex][\because \int\limits_0^{2a} f(x)dx= 2\int\limits_0^{a} f(x)dx, f(2a-x)=f(x)][/Tex]

let tanx = v

dv = sec2xdx

### Question 37.

Solution:

Putthen

x=0 ⇒ t=0 and x=π ⇒

Solution:

we know,

Also here,

f(x) = f(2π -x)

So,

Solution:

then,

### Question 40. If f is an integrable function such that f(2a-x)=f(x), then prove that

Solution:

We have ,

Then,

Let , 2a-t =x then dx=-dt

if t=a ⇒x=a

if t=2a ⇒ x=0

[Tex]=2\int\limits_{0}^{a}f(x)dx[/Tex]

Hence Proved.

### Question 41. If, prove that

Solution:

We have,

Let 2a-t=x then dx=-dt

t=a , x=a ; t=2a , x=0

### (i)

Solution:

we have ,

clearly f(x2) is an even function .

So,

### (ii)

Solution:

clearly , xf(x2) is odd function .

So,

### Question 43. If f(x) is a continuous function defined on [0,2a] . Then, prove that

Solution:

We have from LHS,

substituting

we get,

### Question 44. If f(a+b-x) = f(x), then prove that

Solution:

——————[ Given that f(a+b-x) = f(x) ]

### Question 45. If f(x) is a continuous function defined on [-a,a], then prove that

Solution:

we have ,

Let, x=-t, then dx=-dt

x=-a ⇒ t=a

x=0 ⇒ t=0

Hence, Proved.

### Question 46. Prove that:

Solution:

My Personal Notes arrow_drop_up
Related Tutorials