Evaluate the following integrals.
Question 11. ∫ex(sin4x-4)/(2sin22x)dx
Solution:
We have,
∫ex(sin4x-4)/(2sin22x)dx
=∫ex(2sin2xcos2x-4)/(2sin22x)dx
=∫ex(((2sin2xcos2x)/(2sin22x))-4/(2sin22x))dx
=∫ex(cot2x-2cosec22x)dx
=∫excot2xdx-2∫excosec22xdx
Integrating by parts,
excot2x-2∫exd(cot2x)/dx-2∫excosec22xdx
= excot2x+2∫excosec22xdx-2∫excosec22xdx
= excot2x+C
Question 12. ∫ex(2-x)/(1-x)2dx
We have,
∫ex(2-x)/(1-x)2dx
=∫ex((1-x)+1)/(1-x)2dx
=∫ex(((1/(1-x))+(1/(1-x)2)))dx
=∫ex(1/(1-x))+∫ex(1/(1-x)2)dx
= ex/(1-x)+C
Question 13. ∫ex(1+x)/(x+2)2dx
We have,
∫ex(1+x)/(x+2)2dx
=∫ex((2+x)-1)/(x+2)2dx
=∫ex(((2+x)/(x+2)2)-1/(x+2)2)dx
=∫ex((1/(x+2))-1/(x+2)2)dx
= ex/(x+2)dx
Question 14. ∫e(-x/2)(1-sinx)(1/2)/(1+cosx)dx
We have,
∫e(-x/2)(1-sinx)(1/2)/(1+cosx)dx
Let x/2 = t
So, x = 2t
So the equation is,
∫2e(-t)(1-sin2t)(1/2)/(1+cos2t)dt
=2∫e(-t)(sin2t+cos2t-2sintcost)(1/2)/(2cos2(t))dt
=∫e(-t)(sint-cost)(2*1/2)/cos2tdt
=∫e(-t)(sint-cost)/cos2tdt
=∫e(-t)(tantsect-sect)dt
=∫e(-t)(tant sect)dt-∫e(-t)sectdt
=∫e(-t)(tant sect)dt -e(-t)sect -∫e(-t)(d(sect)/dt) dt
=∫e(-t)(tant sect)dt -e(-t)sect -∫e(-t)sect tantdt
= e(-t)sect
= e(-x/2)sec(x/2)+C
Question 15. ∫ex(logx +1/x)dx
Solution:
We have,
∫ex(logx +1/x)dx
= ex(logx)+C
Question 16. ∫ex(logx+1/x2)dx
Solution:
We have,
∫ex(logx +1/x2)dx
=∫ex(logx+1/x-1/x+1/x2)dx
=∫ex((logx-1/x)+((1/x)+(1/x2))dx
= ex(logx-1/x)+C
Question 17. ∫ex/x(x(logx)2+2logx)dx
Solution:
We have,
∫ex/x(x(logx)2+2logx)dx
=∫ex((logx)2+2ex(logx)/x)dx
=∫ex(logx)2dx +∫(2ex/x)(logx)dx
Integrating by parts,
= ex(logx)2-∫ex(d(logx)2/dx)dx +∫(2ex/x)(logx)dx
= ex(logx)2-∫(ex/x)2logxdx+∫2ex/x(logx)dx
= ex(logx)2+C
Question 18. ∫ex(sin-1x+1/(1-x2)1/2)dx
Solution:
= exsin-1x-∫ex(d(sin-1x)/dx) dx +∫ex/(1-x2)1/2dx
= exsin-1x- ∫ex/(1-x2)1/2dx+∫ex/(1-x2)1/2dx
= exsin-1x+C
Question 19. ∫e2x(-sinx +2cosx)dx
Solution:
= -∫e2xsinxdx +2∫e2xcosxdx
= -∫e2xsinxdx+2((1/2)e2xcosx+∫(1/2)e2xsinxdx)
= -∫e2xsinxdx+e2xcosx+∫e2xsinxdx
= e2xcosx+C
Question 20. ∫ex(tan-1x+1/(1+x2))dx
Solution:
= extan-1x-∫ex (d(tan-1x)/dx) dx+∫ex/(1+x2)dx
= extan-1x-∫ex/(1+x2)dx+∫ex/(1+x2)dx
= extan-1x+C
Question 21. ∫ex((sinxcosx-1)/sin2x)dx
Solution:
= ∫ex(cotx-cosec2x)dx
= excotx-∫ex(d(cotx)/dx) dx-∫excosec2xdx
= excotx+∫excosec2xdx -∫excosec2xdx
= excotx+C
Question 22. ∫(tan(logx)+sec2(logx))dx
Solution:
Suppose,
logx=z
=>ez=x
=>d(ez)/dx=1
=>ezdz=dx
Substituting it in original question,
∫(tan z+sec2z)ezdz
= eztanz -∫ez(d(tanz)/dz))dz+∫ezsec2zdz
= eztanz-∫ezsec2zdz+∫ezsec2zdz
= eztanz+C
= e(logx)tan(logx)+C
= x tan(logx)+C
Question 23. ∫ex(x-4)/(x-2)3dx
Solution:
= ∫ex((x-2)-2)/(x-2)3dx
= ∫ex((1/(x-2)2)-(2/(x-2)3))dx
= ex/(x-2)2-∫ex(d((x-2)-2)/dx)dx-2∫ex/(x-2)3dx
= ex/(x-2)2+2∫ex/(x-2)3dx -2∫ex/(x-2)3dx
= ex/(x-2)2+C
Question 24. ∫e2x((1-sin2x)/(1-2cosx))dx
Solution:
=∫e2x((1-sin2x)/2sin2x)dx
=∫e2x((cosec2x/2)-cotx)dx
Suppose,
I=I1+I2
I1=1/2∫e2xcosec2xdx
I2=-∫e2xcotxdx
let,
u=e2x
=du=2e2xdx
and
∫cosec2xdx=∫dv
=>v=-cotx+C
So,
I1=1/2[e2x(-cotx)-∫(-cotx)2e2xdx]
I1=1/2(e2x(-cotx))+∫cotxe2xdx
Thus,
I=(1/2)(e2x(-cotx))+∫cotxe2xdx -∫e2x cotx dx
=>I=(1/2)(e2x(-cotx))+C
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
28 Mar, 2021
Like Article
Save Article