Skip to content
Related Articles
Open in App
Not now

Related Articles

Class 12 RD Sharma Solutions – Chapter 19 Indefinite Integrals – Exercise 19.25 | Set 2

Improve Article
Save Article
  • Last Updated : 16 Dec, 2021
Improve Article
Save Article

Evaluate the following integrals:

Question 21. ∫(log⁔x)2 x dx

Solution:

Given that, I = ∫(log⁔x)2 x dx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

I = (log⁔x)2∫xdx – ∫(2(log⁔x)(1/x) ∫xdx)dx

= x2/2(log⁔x)2 – 2∫(log⁔x)(1/x)(x2/2)dx

= x2/2(log⁔x)2 – ∫x(log⁔x)dx

= x2/2(log⁔x)2 – [log⁔x∫xdx – ∫ (1/x ∫xdx)dx]

= x2/2(log⁔x)2 – [x22/2 log⁔x – ∫(1/x Ɨ x2/2)dx]

= x2/2(log⁔x)2 – x2/2 log⁔x + 1/2 ∫xdx

= x2/2(log⁔x)2 – x2/2 log⁔x + 1/4 x2 + c

Hence, I = x2/2 [(log⁔x)2 – log⁔x + 1/2] + c

Question 22. ∫e√x dx

Solution:

Given that, I = ∫ e√x dx

 Let us assume, √x = t

x = t2

dx = 2tdt

I = 2∫ et tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

I = 2[t∫etdt – ∫(1∫etdt)dt]

= 2[tet – ∫et dt]

= 2[tet – et] + c

= 2et (t – 1) + c

Hence, I = 2e√x(√x – 1) + c

Question 23. ∫(log⁔(x + 2))/((x + 2)2) dx

Solution:

Given that, I = ∫(log⁔(x + 2))/((x + 2)2) dx

 Let us assume (1/(x + 2) = t

-1/((x + 2)2) dx = dt

I = -∫log⁔(1/t)dt

= -∫log⁔t-1 dt

= -∫1 Ɨ log⁔tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

I = log⁔t∫dt – ∫(1/t ∫dt)dt

= tlog⁔t – ∫(1/t Ɨ t)dt

= tlog⁔t – ∫dt

= tlog⁔t – t + c

= 1/(x + 2) (log⁔(x + 2)-1 – 1) + c

Hence, I = (-1)/(x + 2) – (log⁔(x + 2))/(x + 2) + c

Question 24. ∫(x + sin⁔x)/(1 + cos⁔x) dx

Solution:

Given that, I = ∫(x + sin⁔x)/(1 + cos⁔x) dx

= ∫x/(2cos2x/2) dx + ∫(2sin⁔x/2 cos⁔x/2)/(2cos2⁔x/2) dx

= 1/2 ∫xsec2⁔x/2 dx + ∫tan⁔x/2 dx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= 1/2 [x∫sec2x/2 dx – ∫(1∫ sec²x/2 dx)dx] + ∫tan⁔x/2 dx

= 1/2 [2xtan⁔x/2 – 2∫tan⁔x/2 dx] + ∫tan⁔x/2 dx + c

= xtan⁔x/2 – ∫tan⁔x/2 dx + ∫tan⁔x/2 dx+c

Hence, I = xtan⁔x/2 + c

Question 25. ∫log10xdx

Solution:

Given that, I = ∫log10⁔xdx

= ∫(log⁔x)/(log⁔10) dx

= 1/(log⁔10) ∫1 Ɨ log⁔xdx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= 1/(log⁔10) [log⁔x∫dx – ∫(1/x ∫dx)dx]

= 1/(log⁔10) [xlog⁔x – ∫(x/x)dx]

= 1/(log⁔10)[xlog⁔x – x]

Hence, I = (x/(log⁔10)) Ɨ (log⁔x – 1) + c

Question 26. ∫cos⁔√x dx

Solution:

Given that, I = ∫cos⁔√x dx

Let us assume, √x = t

x = t2

dx = 2tdt

= ∫2tcos⁔tdt

I = 2∫tcos⁔tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

I = 2[t]cos⁔tdt – ∫(1 ∫cos⁔tdt)dt]

= 2[tsin⁔t – ∫sin⁔tdt]

= 2[tsin⁔t + cos⁔t] + c

Hence, I = 2[√x sin⁔√x + cos√x] + c

Question 27. ∫(xcos-1x)/√(1 – x2) dx

Solution:

Given that, I = ∫(xcos-1x)/√(1 – x2) dx

Let us assume, t = cos-1⁔x

dt = (-1)/√(1 – x2) dx

Also, cost = x

I = -∫tcos⁔tdt

Now, using integration by parts,       

So, let

u = t;

du = dt

∫cos⁔tdt = ∫dv

sin⁔t = v

Therefore,

 I = -[tsint – ∫sin⁔tdt]

= -[tsint + cos⁔t] + c

On substituting the value t = cos-1x we get,

 I = -[cos-1⁔xsin⁔t + x] + c

Hence, I = -[cos-1⁔x√(1 – x²) + x] + c

Question 28. ∫cosec3xdx

Solution:

Given that, I =∫cosec3xdx

 =∫cosec⁔x Ɨ cosec2xdx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= cosec⁔x Ɨ ∫cosec2xdx + ∫(cosec⁔xcot⁔x]cosec2xdx)dx

= cosecx Ɨ (-cot⁔x) + ∫cosec⁔xcot⁔x(-cot⁔x)dx

= -cosec⁔xcot⁔x – ∫cosecx⁔cot2⁔xdx

= -cosec⁔xcot⁔x – ∫cosec⁔x(cosec2x – 1)dx

= -cosec⁔xcot⁔x – ∫cosec3xdx + ∫cosecxd⁔x

I = -cosec⁔xcot⁔x – I + log⁔|tan⁔x/2| + c1

2l = -cosec⁔xcot⁔x + log⁔|tan⁔x/2| + c1

Hence, I = -1/2cosecx⁔cot⁔x + 1/2 log⁔|tan⁔x/2| + c

Question 29. ∫sec-1√x dx

Solution:

Given that, I = ∫sec-1⁔√x dx

 Let us assume, √x = t

x = t2

dx = 2tdt

I = ∫2tsec-1⁔tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= 2[sec-1⁔t∫tdt – ∫(1/(t√(t2-1))∫tdt)dt]

= 2[t2/2 sec-1 – ∫(t/(2t√(t2 – 1)))dt]

= t2 sec-1⁔t – ∫t/√(t2 – 1) dt

= t2 sec-1⁔t – 1/2∫2t/√(t2 – 1) dt

= t2 sec-1⁔t – 1/2 Ɨ 2√(t2 – 1) + c

Hence, I = xsec-1⁔√x – √(x – 1) + c

Question 30. ∫sin-1√x dx

Solution:

Given that, I = ∫sin-1⁔√x dx 

Let us assume, x = t

dx = 2tdt

∫sin-1√x dx = ∫sin-1⁔√(t2) 2tdt

= ∫sin-1⁔t2tdt

= sin⁔-1t∫2tdt – (∫(dsin-1⁔t)/dt (∫2tdt)dt

= sin-1⁔t(t2) – ∫1/√(1 – t2) (t2)dt

Now, lets solve ∫1/√(1 – t2) (t2)dt

∫1/√(1 – t2) (t2)dt = ∫(t2 – 1 + 1)/√(1 – t2) dt

= ∫(t2 – 1)/√(1 – t2) dt + ∫1/√(1 – t2) dt

As we know that, value of ∫1/√(1 – t2) dt = sin-1⁔t

So, the remaining integral to evaluate is 

∫(t2 – 1)/√(1 – t2) dt= ∫-√(1 – t2) dt

Now, substitute, t = sin⁔u, dt = cos⁔udu, we gte

∫-√(1 – t2) dt = ∫-cos2udu = -∫[(1 + cos⁔2u)/2]du

= -u/2-(sin⁔2u)/4

Now substitute back u = sin-1x and t = √x, we get

= -(sin-1√x)/2 – (sin⁔(2sin-1⁔√x))/4

∫sin-1√x dx = xsin-1⁔√x-(sin-1⁔√x)/2 – (sin⁔(2sin-1√x))/4

sin⁔(2sin-1⁔√x) = 2√x √(1 – x)

Hence, I = xsin-1⁔√x – (sin-1⁔√x)/2 – √(x(1 – x))/2 + c

Question 31. ∫xtan2⁔xdx

Solution:

Given that, I =∫xtan2⁔xdx

 = ∫x(sec2x – 1)dx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

 = ∫xsec8xdx – ∫xdx

 = [x∫sec2xdx – ∫(1∫sec2xdx)dx] – x2/2

 = xtan⁔x – ∫tan⁔xdx – x2/2

Hence, I = xtan⁔x – log⁔|sec⁔x| – x2/2 + c

Question 32. ∫ x((sec⁔2x – 1)/(sec⁔2x + 1))dx

Solution:

Given that, I = ∫ x((sec⁔2x – 1)/(sec⁔2x + 1))dx

= ∫x((1 – cos⁔2x)/(1 + cos⁔2x))dx

= ∫x((sec2⁔x)/(cos2⁔x))dx

= ∫xtan2xdx

= ∫x(sec2⁔x – 1)dx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= ∫xsec2xdx – ∫dx

= [x∫sec2⁔xdx – ∫(1∫  sec2xdx)dx] – x2/2

= xtan⁔x – ∫tan⁔xdx – x2/2

= xtan⁔x – log|secx| – x2/2 + c

Hence, I = xtan⁔x – log|secx| – x2/2 + c

Question 33. ∫(x + 1)exlog⁔(xex)dx

Solution:

Given that, I = ∫(x + 1)exlog⁔(xex)dx

Let us assume, xex = t

(1 Ɨ ex + xex)dx = dt

(x + 1)exdx = dt

I = ∫log⁔tdt

= ∫1 Ɨ log⁔tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= log⁔t∫dt – ∫(1/t∫dt)dt

= tlog⁔t – ∫(1/t Ɨ t)dt

= tlog⁔t – ∫dt

= tlog⁔t – t + c

= t(log⁔t – 1) + c

Hence, I = xex (log⁔xex – 1) + c

Question 34. ∫sin-1(3x – 4x3)dx

Solution:

Given that, I = ∫sin-1(3x – 4x3)dx

Let us assume, x = sin⁔θ

dx = cos⁔θdθ

= ∫sin-1⁔(3sin⁔θ – 4sin3⁔θ)cos⁔θdĪø

= ∫sin-1(sin⁔3θ)cos⁔θdθ

= ∫3θcos⁔θdθ

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= 3[Īø]cos⁔θdĪø – ∫(1∫cos⁔θdĪø)dĪø]

= 3[Īøsin⁔θ – ∫sin⁔θdĪø]

= 3[θsin⁔θ + cos⁔θ] + c

Hence, I = 3[xsin-1⁔x + √(1 – x2)] + c)

Question 35. ∫sin-1(2x/(1 + x2))dx.

Solution:

Given that, I = ∫sin-1(2x/(1 + x2))dx

Let us assume, x = tan⁔θ

dx = sec2⁔θdθ

sin-1⁔(2x/(1 + x2)) = sin-1⁔((2tan⁔θ)/(1 + tan²⁔θ))

= sin-1⁔(sin⁔2θ) = 2θ

∫sin-1⁔(2x/(1 + x2))dx = ∫2θsec2θdθ = 2∫θsec2⁔θdθ

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

2[θ∫sec2⁔θdĪø – ∫{(d/dĪø Īø) ∫sec2ĪødĪø}dĪø

= 2[Īøtan⁔θ – ∫tan⁔θdĪø]

= 2[θtan⁔θ + log⁔|cos⁔θ|] + c

= 2[xtan-1⁔x + log⁔|1/√(1 + x2)|] + c

= 2xtan-1⁔x + 2log⁔(1 + x2)1/2 + c

= 2xtan-1⁔x + 2[-1/2 log⁔(1 + x2)] + c

= 2xtan-1⁔x – log⁔(1 + x2) + c

Hence, I = 2xtan-1⁔x – log⁔(1 + x2) + c

Question 36. ∫ tan-1((3x – x3)/(1 – 3x2))dx

Solution:

Given that, I = ∫tan-1⁔((3x – x3)/(1 – 3x2))dx

 Let us assume, x = tan⁔θ

dx = sec2⁔θdθ

I = ∫tan-1⁔((3tan⁔θ – tan3Īø)/(1 – 3tan2⁔x)) sec2⁔θdĪø

=∫tan-1⁔(tan⁔3θ)sec2θdθ

= ∫3θsec2θdθ

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= 3[θ∫ sec2⁔θdĪø – ∫(1∫sec2ĪødĪø)dĪø]

= 3[Īøtan⁔θ – ∫tan⁔θdĪø]

= 3[θtan⁔θ + log⁔sec⁔θ] + c

= 3[xtan-1x – log⁔√(1 + x2)] + c

Hence, I = 3[xtan-1x – log⁔√(1 + x2)] + c

Question 37. ∫x2sin-1xdx

Solution:

Given that, I = ∫x2sin-1⁔xdx

I = sin-1x∫x2 dx – ∫(1/√(1 – x2) ∫x2 dx)dx

= x3/3 sin-1⁔x – ∫x3/(3√(1 – x2)) dx

I = x3/3 sin-1⁔x – 1/3 I1 + c1 …..(1)

Let I1 = ∫x3/√(1 – x2) dx

Let 1 – x2 = t2

-2xdx = 2tdt

-xdx = tdt

I1 = -∫(1 – t2)tdt/t

= ∫(t2 – 1)dt

= t3/3 – t + c2

= (1 – x2)3/2/3 – (1 – x2)1/2 + c2

Now, put the value of I1 in eq(1), we get

Hence, I = x3/3 sin-1⁔x – 1/9 (1 – x2)3/2 + 1/3 (1 – x2)1/2 + c

Question 38. ∫(sin-1x)/x2dx

Solution:

Given that, I =∫(sin-1⁔x)/x2dx

 = ∫(1/x2)(sin-1⁔x)dx

I = [sin-1⁔x∫1/x2dx – ∫(1/√(1 – x2) ∫1/x2dx)dx]

= sin-1Ɨ(-1/x) – ∫1/√(1 – x2) (-1/x)dx

I = -1/x sin-1x + ∫1/(x√(1 – x2)) dx

I = -1/x sin-1⁔x + I1  …….(1)

Where,

I1 = ∫1/(x√(1 – x2)) dx

Let 1 – x2 = t2

-2xdx = 2tdt

I1 = ∫x/(x2√(1 – x2)) dx

= -∫tdt/((1 – t2) √t)

= -∫dt/((1 – t2))

= ∫1/(t2 – 1) dt

= 1/2 log⁔|(t – 1)/(t + 1)| 

= 1/2 log⁔|(t – 1)/(t + 1)|

= 1/2 log⁔|(√(1 – x2) – 1)/(√(1 – x2) + 1)| + c1

Now, put the value of I1 in eq(1), we get

I = -(sin-1x)/x + 1/2 log⁔|((√(1 – x2) – 1)/(√(1 – x2) + 1))((√(1 – x2) – 1)/(√(1 – x2) – 1))| + c 

= -(sin-1⁔x)/x + 1/2 log⁔|(√(1 – x2) – 1)2/(1 – x2 – 1)| + c

= -(sin-1⁔x)/x + 1/2 log⁔|(√(1 – x2) – 1)2/(-x2)| + c

= -(sin-1⁔x)/x + log⁔|(√(1 – x2) – 1)/(-x)| + c

Hence, I = -(sin-1x)/x + log⁔|(1 – √(1 – x2))/x| + c

Question 39. ∫(x2 tan-1x)/(1 + x2) dx

Solution:

Given that, I = ∫(x2 tan-1⁔x)/(1 + x2) dx

Let us assume, tan-1⁔x = t     [x = tan⁔t]

1/(1 + x2) dx = dt

I = ∫t Ɨ tan2tdt

= ∫t(sec2⁔t – 1)dt

= ∫(tsec2t – t)dt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= ∫tsec2tdt – ∫tdt

= [t∫sec2tdt – ∫(1)sec2⁔tdt)dt] – t2/2

= [t Ɨ tan⁔t – ∫tan⁔tdt] – t2/2

= t tan⁔t – log⁔sec⁔t – t2/2 + c

= xtan-1⁔x – log⁔√(1 + x2) – (tan2x)/2 + c

Hence, I = xtan-1⁔x – 1/2 log⁔|1 + x2| – (tan2⁔x)/2 + c

Question 40. ∫cos-1(4x3 – 3x)dx

Solution:

Given that, I = ∫cos-1⁔(4x3 – 3x)dx

 Let us assume, x = cos⁔θ

dx = -sin⁔θdθ

I = -∫cos-1(4cos⁔3Īø – 3cos⁔θ)sin⁔θdĪø

= – ∫cos-1(cos⁔3Īø)sin⁔θdĪø

= -∫3θsin⁔θdθ

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) Ɨ ∫u dx}dx + c 

We get

= -3[Īø]sin⁔θdĪø – ∫(1∫sin⁔θdĪø)dĪø]

= -3[-θcos⁔θ + ∫cos⁔θdθ]

= 3Īøcos⁔θ – 3sin⁔θ + c

Hence, I = 3xcos-1x – 3√(1 – x2) + c


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!