Question 27. If y = [log{x+(√x2+1)}]2, show that (1 + x2)(d2y/dx2) + x(dy/dx) = 2.
Solution:
We have,
y = [log{x + (√x2 + 1)}]2
On differentiating both sides w.r.t x,



dy/dx = 2[log{x + (√x2 + 1)}]/(√x2 + 1)
Again differentiating both sides w.r.t x,


(x2 + 1)(d2y/dx2) = 2 – x(dy/dx)
(x2 + 1)(d2y/dx2) + x(dy/dx) = 2
Hence Proved
Question 28. If y = (tan-1x)2, then prove that (1 + x2)2y2 + 2x(1 + x2)y1 = 2
Solution:
We have,
y = (tan-1x)2
On differentiating both sides w.r.t x,
y1 = 2(tan-1x)[1/(1 + x2)]
(1 + x2)y1 = 2(tan-1x)
Again differentiating both sides w.r.t x,
(1 + x2)y2 + 2xy1 = 2/(1 + x2)
(1 + x2)2y2 + 2x(1 + x2)y1 = 2
Hence Proved
Question 29. If y = cotx, prove that (d2y/dx2) + 2y(dy/dx) = 0.
Solution:
We have,
y = cotx
On differentiating both sides w.r.t x,
(dy/dx) = -cosec2x
Again differentiating both sides w.r.t x,
d2y/dx2 = -(2cosec x) × (-cosec x.cot x)
d2y/dx2 = 2cosec2x.cot x
d2y/dx2 = 2(cot x)(cosec2x)
d2y/dx2 = -2y(dy/dx)
d2y/dx2 + 2y(dy/dx) = 0
Hence Proved
Question 30. Find d2y/dx2 where y = log(x2/e2).
Solution:
We have,
y = log(x2/e2)
On differentiating both sides w.r.t x,

(dy/dx) = (2/x)
Again differentiating both sides w.r.t x,
d2y/dx2 = -(2/x2)
Hence Proved
Question 31. If y = ae2x + be-x, show that (d2y/dx2) – (dy/dx) – 2y = 0.
Solution:
We have,
y = ae2x + be-x
On differentiating both sides w.r.t t,
(dy/dx) = 2ae2x – be-x
Again differentiating both sides w.r.t x,
(d2y/dx2) = 4ae2x + be-x
(d2y/dx2) = 2ae2x – be-x + 2(ae2x + be-x)
(d2y/dx2) = (dy/dx) + 2y
(d2y/dx2) – (dy/dx) – 2y = 0
Hence Proved
Question 32. If y = ex(sinx + cosx), prove that d2y/dx2 – 2(dy/dx) + 2y = 0.
Solution:
We have,
y = ex(sinx + cosx)
On differentiating both sides w.r.t x,
(dy/dx) = ex(sinx + cosx) + ex(cosx – sinx)
(dy/dx) = 2excosx
Again differentiating both sides w.r.t x,
(d2y/dx2) = 2excosx – 2exsinx
Lets take L.H.S,
= d2y/dx2 – 2(dy/dx) + 2y
= 2excosx – 2exsinx – 2(2excosx) + 2ex(sinx + cosx)
= 4excosx – 4excosx – 2exsinx + 2exsinx
= 0
L.H.S = R.H.S
Hence Proved
Question 33. If y = cos-1x, find d2y/dx2 in terms of y alone.
Solution:
We have,
y = cos-1x
On differentiating both sides w.r.t x,
(dy/dx) = -1/√(1-x2)
Again differentiating both sides w.r.t x,
…(i)
y = cos-1x
x = cosy
On putting the value of x in equation (i), we get


d2y/dx2 = -cosy/sin3y
d2y/dx2 = -cot y cosec2y
Question 34. If y =
, prove that (1 – x2)(d2y/dx2) – x(dy/dx) – a2y = 0.
Solution:
We have,
y = 
Taking log both sides
logy = acos-1x.loge
logy = acos-1x
On differentiating both sides w.r.t x,
(1/y)(dy/dx) = a×[-1/√(1-x2)]
(dy/dx) = -ay/√(1-x2)
On squaring both sides, we have
(dy/dx)2 = a2y2/(1 – x2)
(1 – x2)(dy/dx)2 = a2y2
Again differentiating both sides w.r.t x,
2(1 – x2)(dy/dx)(d2y/dx2) – 2x(dy/dx)2 = 2a2y(dy/dx)
(1 – x2)(d2y/dx2) – x(dy/dx) = a2y
(1 – x2)(d2y/dx2) – x(dy/dx) – a2y = 0
Hence Proved
Question 35. If y = 500e7x + 600e-7x, show that d2y/dx2 = 49y.
Solution:
We have,
y = 500e7x + 600e-7x
On differentiating both sides w.r.t θ,
(dy/dx) = 7 × (500e7x – 600e-7x)
Again differentiating both sides w.r.t x,
(d2y/dx2) = 49 × (500e7x + 600e-7x)
(d2y/dx2) = 49y
Hence Proved
Question 36. If x = 2cos t – cos 2t, y = 2sin t – sin 2t, find d2y/dx2 at t = Ï€/2.
Solution:
We have,
x = 2cos t – cos 2t, and y = 2sin t – sin 2t
On differentiating both sides w.r.t t,
(dx/dt) = -2sin t + 2sin 2t, (dy/dt) = 2cos t – 2cos 2t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = (2cos t – 2cos 2t)/(-2sin t + 2sin 2t)
(dy/dx) = (cos t – cos 2t)/(-sin t + sin 2t)
Again differentiating both sides w.r.t x,


At t = π/2

d2y/dx2 = (1 + 2)/-2
d2y/dx2 = -(3/2)
Question 37. If x = 4z2 + 5, y = 6z2 + 7z + 3, find d2y/dx2.
Solution:
We have,
x = 4z2 + 5, and y = 6z2 + 7z + 3
On differentiating both sides w.r.t z,
(dx/dz) = 8z, and (dy/dz) = 12z + 7
(dy/dx) = (dy/dz) × (dz/dx)
(dy/dx) = (12z + 7)/8z
Again differentiating both sides w.r.t x,


(d2y/dx2) = -7/64z3
Hence Proved
Question 38. If y = log(1 + cosx), prove that d3y/dx3 + (d2y/dx2).(dy/dx) = 0.
Solution:
We have,
y = log(1 + cosx)
On differentiating both sides w.r.t x,
(dy/dx) = -sinx/(1 + cosx)
Again differentiating both sides w.r.t x,

d2y/dx2 = (-cosx – cos2x – sin2x)/(1 + cosx)2
d2y/dx2 = -(1 + cosx)/(1 + cosx)2
d2y/dx2 = -1/(1 + cosx)
Again differentiating both sides w.r.t x,
d3y/dx3 = -sinx/(1 + cosx)2
d3y/dx3 + [-1/(1 + cosx)][-sinx/(1 + cosx)] = 0
d3y/dx3 + (d2y/dx2).(dy/dx) = 0
Hence Proved
Question 39. If y = sin(logx), prove that x2(d2y/dx2) + x(dy/dx) + y = 0.
Solution:
We have,
y = sin(logx)
On differentiating both sides w.r.t x,
(dy/dx) = cos(logx).(1/x)
x(dy/dx) = cos(logx)
Again differentiating both sides w.r.t x,
x(d2y/dx2) + (dy/dx) = -sin(logx).(1/x)
x2(d2y/dx2) + x(dy/dx) = -sin(logx)
x2(d2y/dx2) + x(dy/dx) = -y
x2(d2y/dx2) + x(dy/dx) + y = 0
Hence Proved
Question 40. If y = 3e2x + 2e3x, prove that d2y/dx2 – 5(dy/dx) + 6y = 0.
Solution:
We have,
y = 3e2x + 2e3x
On differentiating both sides w.r.t x,
(dy/dx) = 6e2x + 6e3x
(dy/dx) = 6(e2x + e3x)
Again differentiating both sides w.r.t x,
d2y/dx2 = 6(2e2x + 3e3x)
d2y/dx2 = 12e2x + 18e3x
d2y/dx2 = 5(6e2x + 6e3x) – 6(3e2x + 2e3x)
d2y/dx2 = 5(dy/dx) – 6y
d2y/dx2 – 5(dy/dx) + 6y = 0
Hence Proved
Question 41. If y = (cot-1x)2, prove that y2(x2 + 1)2 + 2x(x2 + 1)y1 = 2.
Solution:
We have,
y = (cot-1x)2
On differentiating both sides w.r.t x,
y1 = 2(cot-1x) × [-1/(1 + x2)]
(1 + x2)y1 = -2cot-1x
Again differentiating both sides w.r.t x,
(1 + x2)y2 + 2xy1 = 2/(1 + x2)
(1 + x2)2y2 + 2x(1 + x2)y1 = 2
Hence Proved
Question 42. If y = cosec-1x, then show that x(x2 – 1)d2y/dx2 – (2x2 – 1)(dy/dx) = 0.
Solution:
We have,
y = cosec-1x
On differentiating both sides w.r.t x,
(dy/dx) = -1/x√(x2 – 1)
On squaring both sides,
(dy/dx)2 = 1/x2(x2 – 1)
x2(x2 – 1)(dy/x)2 = 1
(x4 – x2)(dy/dx)2 = 1
2(dy/dx)(d2y/dx2)(x4 – x2) + (dy/dx)2(4x3 – 2x) = 0
2x2(x2 – 1)(dy/dx)(d2y/dx2) + 2x(2x2 – 1)(dy/dx)2 = 0
x(x2 – 1)(d2y/dx2) + (2x2 – 1)(dy/dx) = 0
Hence Proved
Question 43. If x = cos t + log(tant/2), y = sin t, then find the value of d2y/dt2 and d2y/dx2 at t = π/4 in terms of y alone.
Solution:
We have,
y = sin t
On differentiating both sides w.r.t t,
(dy/dt) = cos t
Again differentiating both sides w.r.t x,
(d2y/dx2) = -sin t
At t = π/4
(d2y/dx2)t=Ï€/4 = -sin(Ï€/4)
= -1/√2
x = cos t + log(tant/2)
On differentiating both sides w.r.t t,


(dx/dt) = -sin t + (1/sin t)
(dx/dt) = (-sin2t + 1)/sin t
(dx/dt) = cos2t/sint
(dx/dt) = cos t × cot t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [cos t] × [1/cos t × cot t]
(dy/dx) = tan t
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2t × (dt/dx)
(d2y/dx2) = sec2t × [1/cos t × cot t]
(d2y/dx2) = sin t/cos4t
(d2y/dx2)t=Ï€/4 = sin(Ï€/4)/cos4(Ï€/4)
(d2y/dx2) = 2√2
At t = π/4, (d2y/dx2) = -1/√2 and (d2y/dx2) = 2√2
Question 44. If x = asin t, y = a[cos t + log(tant/2)], find d2y/dx2.
Solution:
We have,
x = asin t, and y = a[cos t + log(tant/2)]
On differentiating both sides w.r.t t,
(dx/dt) = acos t and 

(dy/dt) = a[-sin t + (1/sin t)]
(dy/dt) = a[(-sin2t + 1)/sin t]
(dy/dt) = a[cos2t/sint]
(dy/dt) = acos t × cot t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [acos t × cot t] × [1/acos t]
(dy/dx) = cot t
Again differentiating both sides w.r.t x,
(d2y/dx2)=-cosec2t × (dt/dx)
(d2y/dx2) = -cosec2t × [1/acos t]
(d2y/dx2) = -(1/asin2t × cos t)
Question 45. If x = a(cos t + tsin t), and y = a(sin t – tcos t), then find the value of d2y/dx2 at t = Ï€/4.
Solution:
We have,
x = a(cos t + tsin t), and y = a(sin t – tcos t)
On differentiating both sides w.r.t t,
(dx/dt) = a(-sin t + sin t + tcos t)
(dx/dt) = atcos t
y = a(sin t – tcos t)
On differentiating both sides w.r.t t,
(dy/dx) = a(cos t – cos t + tsin t)
(dy/dx) = atsin t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [atsin t] × [1/atcos t]
(dy/dx) = tan t
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2x × (dt/dx)
(d2y/dx2) = sec2x × (1/atcos t)
(d2y/dx2) = 1/atcos3t

(d2y/dx2) = (8√2/aπ)
Question 46. If x = a[cos t + log(tant/2)], y = asin t, evaluate (d2y/dx2) at t = π/3.
Solution:
We have,
y = asin t
On differentiating both sides w.r.t t,
(dy/dt) = acos t
x = a[cos t + log(tant/2)]
On differentiating both sides w.r.t t,
![Rendered by QuickLaTeX.com \frac{dx}{dt}=a[-sin t+\frac{1}{tan\frac{t}{2}}.sec^2\frac{t}{2}.\frac{1}{2}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-02d2edbeefe573a5d510c54f60d9a2fb_l3.png)
![Rendered by QuickLaTeX.com \frac{dx}{dt}=a[-sin t+\frac{1}{2sin\frac{t}{2}cos\frac{t}{2}}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-a2e19f0095f39109c6824d1e012720e5_l3.png)
(dx/dt) = a[-sin t + (1/sin t)]
(dx/dt) = a[(-sin2t + 1)/sin t]
(dx/dt) = a[cos2t/sint]
(dx/dt) = acos t × cot t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [cos t] × [1/cos t × cot t]
(dy/dx) = tan t
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2t × (dt/dx)
(d2y/dx2) = sec2t × [1/acos t × cot t]
(d2y/dx2) = sin t/acos4t
(d2y/dx2)t=Ï€/3 = sin(Ï€/3)/acos4(Ï€/3)
(d2y/dx2) = (8√3/a)
Question 47. If x = a(cos2t + 2tsin2t), and y = a(sin2t – 2tcos2t), then find d2y/dx2.
Solution:
We have,
x = a(cos2t + 2tsin2t), and y = a(sin2t – 2tcos2t)
On differentiating both sides w.r.t t,
(dx/dt) = a(-2sin2t + 2sin2t + 4tcos2t), and (dy/dt) = a(2cos2t – 2cos2t + 4tsin2t)
(dy/dt) = a(4tcos2t), and (dy/dt)=a(4tsin2t)
(dy/dx) = (dy/dz) × (dz/dx)
(dy/dx) = a(4tsin2t)/a(4tcos2t)
(dy/dx) = tan2t
Again differentiating both sides w.r.t x,
(d2y/dx2) = 2sec22t.(dt/dx)
(d2y/dx2) = 2sec22t/4atcos2t
(d2y/dx2) = 1/2atcos32t
(d2y/dx2) = (1/2at) × (sec3x)
Question 48. If x = asin t – bcos t, y = acos t + bsin t, prove that (d2y/dx2) = -(x2 + y2)/y3
Solution:
We have,
x = asin t – bcos t
On differentiating both sides w.r.t t,
(dx/dt) = acos t + bsin t
y = acos t + b sin t
On differentiating both sides w.r.t t,
(dy/dt) = -asin t + bcos t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [-asin t + bcos t] × [1/(acos t + bsin t)]
Again differentiating both sides w.r.t x,



d2y/dx2 = (-y2 – x2)/y3
d2y/dx2 = -(x2 + y2)/y3
Hence Proved
Question 49. Find A and B so that y = Asin3x + Bcos3x, satisfies the equation d2y/dx2 + 4(dy/dx) + 3y = 10cos3x.
Solution:
We have,
y = Asin3x + Bcos3x,
On differentiating both sides w.r.t x,
(dy/dx) = 3Acos3x – 3Bsin3x
Again differentiating both sides w.r.t x,
d2y/dx2 = -9Asin3x – 9Bcos3x
d2y/dx2 + 4(dy/dx) + 3y = (-9Asin3x – 9Bcos3x) + 4(3Acos3x – 3Bsin3x) + 3(Asin3x + Bcos3x)
= -9Asin3x – 9Bcos3x + 12Acos3x – 12Bsin3x + 3Asin3x + 3Bcos3x
= -6Asin3x – 12Bsin3x – 6Bcos3x + 12Acos3x
= (-6A – 12B)sin3x + (-6B + 12A)cos3x …(i)
Given that
d2y/dx2 + 4(dy/dx) + 3y = 10cos3x …(ii)
On comparing the coefficients, we get
(-6A – 12B) = 0 and (-6B + 12A) = 10
Solving equation,
A = (2/3) and B = -(1/3)
Question 50. If y = Ae-ktcos(pt + c), prove that (d2y/dt2) + 2k(dy/dt) + n2y = 0, where n2 = p2 + k2
Solution:
We have,
y = Ae-ktcos(pt + c)
On differentiating both sides w.r.t t,
(dy/dt) = -kAe-ktcos(pt + c) – pAe-ktsin(pt + c)
(dy/dt) = -ky – pAe-ktsin(pt + c)
Again differentiating both sides w.r.t t,
(d2y/dt2) = -k(dy/dt) + pAke-ktsin(pt + c) – p2Ake-ktcos(pt + c)
(d2y/dt2) = -k(dy/dt) + k(-ky – dy/dx) – p2y
(d2y/dt2) = -k(dy/dt) – k2y – k(dy/dt) – p2y
(d2y/dt2) + 2k(dy/dt) + (k2 + p2)y = 0
(d2y/dt2) + 2k(dy/dt) + n2y = 0
Hence Proved
Question 51. If y = xn{acos(logx) + bsin(logx)}, prove that x2(d2y/dt2) + (1 – 2n) x (dy/dt) + (1 + n2)y = 0.
Solution:
We have,
y = xn{acos(logx) + bsin(logx)} …(i)
On differentiating both sides w.r.t x,
(dy/dx) = nxn-1{acos(logx) + bsin(logx)} + xn{-asin(logx).(1/x) + bcos(logx).(1/x)}
x(dy/dx) = nxn{acos(logx) + bsin(logx)} + xn{-asin(logx) + bcos(logx)}
x(dy/dx) = ny + xn{-asin(logx) + bcos(logx)} …(ii)
xn{-asin(logx) + bcos(logx)} = x(dy/dx) – ny …(iii)
Again differentiating both sides w.r.t x,
x(d2y/dx2) + (dy/dx) = n(dy/dx) + nxn-1{-asin(logx) + bcos(logx)} + xn{-acos(logx).(1/x) – bsin(logx).(1/x)}
x2(d2y/dx2) + (dy/dx) = nx(dy/dx) + nxn{-asin(logx) + bcos(logx)} – xn{acos(logx) + bsin(logx)}
x2(d2y/dx2) = nx(dy/dx) + n{x(dy/dx) – ny} – y – (dy/dx) [From equation (ii) and (iii)]
x2(d2y/dx2) = nx(dy/dx) + nx(dy/dx) – (dy/dx) – n2y – y
x2(d2y/dx2) = (dy/dx) x [2n – 1] – (n2 + 1)y
x2(d2y/dt2) + (1 – 2n) x (dy/dt) + (1 + n2)y = 0
Hence Proved
Question 52. y =
, prove that (x2+1)d2y/d2x + xdy/dx – ny = 0.
Solution:
We have y = ![Rendered by QuickLaTeX.com a[x + \sqrt{x^2+1}]^n+b[x - \sqrt{x^2+1}]^{-n}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-7b86897c2393a9cb4ea191c17266fd10_l3.png)
On differentiating both sides w.r.t x,
dy/dx = ![Rendered by QuickLaTeX.com na[x + \sqrt{x^2+1}]^{n-1}[1+x(x^2+1)]^{\frac{-1}{2}}+nb[x - \sqrt{x^2+1}]^{-n-1}[1-x(x^2+1)]^{\frac{-1}{2}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-60b956252d6dea21fc8f43c53dfb5118_l3.png)
dy/dx = ![Rendered by QuickLaTeX.com \frac{na}{\sqrt{x^2+1}}[x + \sqrt{x^2+1}]^{n}+\frac{nb}{\sqrt{x^2+1}}[x - \sqrt{x^2+1}]^{-n}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-1435559277dded4375a87b8bf80f2b4d_l3.png)
dy/dx = ![Rendered by QuickLaTeX.com \frac{n}{\sqrt{x^2+1}}[a[x + \sqrt{x^2+1}]^{n}+b[x - \sqrt{x^2+1}]^{-n}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-24c566ecab3f53320d553becfe438767_l3.png)
xdy/dx = 
Again differentiating both sides w.r.t x,
d2y/dx2 = ![Rendered by QuickLaTeX.com \frac{nx}{\sqrt{x^2+1}}\frac{dy}{dx}+y[\frac{\sqrt{x^2+1}-x^2(x^2+1)^{-\frac{1}{2}}}{x^2+1}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-311e619691976336040e009d17765188_l3.png)
d2y/dx2 = ![Rendered by QuickLaTeX.com \frac{n^2x^2}{x^2+1}+y[\frac{1}{(x^2+1)(\sqrt{x^2+1})}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-3edc5e80ddf539044960bae3d17b2a36_l3.png)
d2y/dx2 = 
(x2+1)d2y/d2x = 
Now put all these values in this equation
(x2+1)d2y/d2x + xdy/dx – ny

Hence Proved