Open In App

Class 12 NCERT Solutions- Mathematics Part I – Chapter 3 Matrices – Exercise 3.2

Last Updated : 03 Apr, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Question 1. Let [Tex]A =\begin{bmatrix}3 & 4 \\3 & 2 \\\end{bmatrix},B=\begin{bmatrix}1 & 3 \\-2 & 5 \\\end{bmatrix}, C=\begin{bmatrix}-2 & 5 \\3 & 4 \\\end{bmatrix}   [/Tex] 

Find each of the following:

(i) A + B 

(ii) A – B

(iii) 3A – C 

(iv) AB 

(v) BA

Solution:

(i) [Tex]A+B=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]+\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right] \\ =\left[\begin{array}{ll} 2+1 & 4+3 \\ 3-2 & 2+5 \end{array}\right] \\ =\left[\begin{array}{ll} 3 & 7 \\ 1 & 7 \end{array}\right][/Tex]

(ii) [Tex]A-B=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]-\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right] \\ =\left[\begin{array}{cc} 2-1 & 4-3 \\ 3 & -(-2) & 2-5 \end{array}\right] \\ =\left[\begin{array}{cc} 1 & 1 \\ 5 & -3 \end{array}\right] [/Tex]

(iii) [Tex]3 A-C=3\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\ 3 & 4 \end{array}\right] \\ =\left[\begin{array}{ll} 3 \times 2 & 3 \times 4 \\ 3 \times 3 & 3 \times 2 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\ 3 & 4 \end{array}\right] \\ =\left[\begin{array}{lc} 6 & 12 \\ 9 & 6 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\ 3 & 4 \end{array}\right] \\ =\left[\begin{array}{ll} 6+2 & 12-5 \\ 9  -3 & 6-4 \end{array}\right] \\ =\left[\begin{array}{ll} 8 & 7 \\ 6 & 2 \end{array}\right] [/Tex]

(iv) [Tex]A B=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right]\\ =\left[\begin{array}{ll} 2(1)+4(-2) & 2(3)+4(5) \\ 3(1)+2(-2) & 3(3)+2(5) \end{array}\right]\\ =\left[\begin{array}{ll} 2-8 & 6+20 \\ 3-4 & 9+10 \end{array}\right]\\ =\left[\begin{array}{ll} -6 & 26 \\ -1 & 19 \end{array}\right] [/Tex]

(v) [Tex]BA =\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right]\left[\begin{array}{cc} 2 & 4 \\ 3 & 2 \end{array}\right] \\ =\left[\begin{array}{cc} 1(2)+3(3) & 1(4)+3(2) \\ -2(2)+5(3) & -2(4)+5(2) \end{array}\right] \\ =\left[\begin{array}{rr} 2+9 & 4+6 \\ -4+15 & -8+10 \end{array}\right] \\ =\left[\begin{array}{cc} 11 & 10 \\ 11 & 2 \end{array}\right] [/Tex]

Question 2. Compute the following: 

[Tex](i)\begin{bmatrix}a & b \\-b & a \\\end{bmatrix}+\begin{bmatrix}a & b \\b & a \\\end{bmatrix}\\ (i)\begin{bmatrix}a^{2}+b^{2} & b^{2}+c^{2}\\a^{2}+c^{2} & a^{2}+b^{2} \\\end{bmatrix}+\begin{bmatrix}2ab & 2bc \\-2ac & -2ab\\\end{bmatrix}\\ (i)\begin{bmatrix}-1 & 4 & -6\\8 & 5 & 16\\2 & 8 & 5\end{bmatrix}+\begin{bmatrix}12 & 7 & 6\\8 & 0 & 5\\3 & 2 & 4\end{bmatrix}\\ (i)\begin{bmatrix}cos^{2} & sin^{2} \\sin^{2} & cos^{2} \\\end{bmatrix}+\begin{bmatrix}sin^{2} & cos^{2} \\cos^{2} & sin^{2} \\\end{bmatrix}\\[/Tex]

Solution:

(i) [Tex]{\left[\begin{array}{cc} a & b \\ -b & a \end{array}\right]+\left[\begin{array}{cc} a & b \\ b & a \end{array}\right]} \\ =\left[\begin{array}{cc} a+a & b+b \\ -b+b & a+a \end{array}\right] \\ =\left[\begin{array}{cc} 2 a & 2 b \\ 0 & 2 a \end{array}\right] [/Tex]

(ii) [Tex]{\left[\begin{array}{l} a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2} \end{array}\right]+\left[\begin{array}{cc} 2 a b & 2 b c \\ -2 a c & -2 a b \end{array}\right]} \\ =\left[\begin{array}{ll} a^{2}+b^{2}+2 a b & b^{2}+c^{2}+2 b c \\ a^{2}+c^{2}-2 a c & a^{2}+b^{2}-2 a b \end{array}\right] \\ =\left[\begin{array}{c} (a+b)^{2}&(b+c)^{2} \\ (a-c)^{2} & (a-b)^{2} \end{array}\right] [/Tex]

(iii) [Tex]{\left[\begin{array}{ccc} -1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5 \end{array}\right]+\left[\begin{array}{ccc} 12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4 \end{array}\right]} \\ =\left[\begin{array}{ccc} -1+12 & 4+7 & -6+6 \\ 8+8 & 5+0 & 16+5 \\ 2+3 & 8+2 & 5+4 \end{array}\right] \\ =\left[\begin{array}{ccc} 11 & 11 & 0 \\ 16 & 5 & 21 \\ 5 & 10 & 9 \end{array}\right] [/Tex]

(iv) [Tex]{\left[\begin{array}{ll} \cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x \end{array}\right]+\left[\begin{array}{ll} \sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x \end{array}\right]} \\ =\left[\begin{array}{cc} \cos ^{2} x+\sin ^{2} x & \cos ^{2} x+\sin ^{2} x \\ \sin ^{2} x+\cos ^{2} x & \cos ^{2} x+\sin ^{2} x \end{array}\right] \\ =\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right][/Tex]

Question 3. Compute the indicated products.

[Tex](i)\begin{bmatrix}a & b \\-b & a \\\end{bmatrix}\begin{bmatrix}a & -b \\b & a \\\end{bmatrix}\\ (ii)\begin{bmatrix}1 \\2\\3\end{bmatrix}\begin{bmatrix}2&3&4\\\end{bmatrix}\\ (iii)\begin{bmatrix}1 & -2 \\2 & 3 \\\end{bmatrix}\begin{bmatrix}1 & 2 & 3\\2 & 3 & 1\\\end{bmatrix}\\ (iv)\begin{bmatrix}2 & 3 & 4\\3 & 4 & 5\\4 & 5 & 6\end{bmatrix}\begin{bmatrix}1 & -3 & 5\\0 & 2 & 4\\3 & 0 & 5\end{bmatrix}\\ (v)\begin{bmatrix}2 & 1 \\3 & 2 \\-1 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 1\\-1 & 2 & 1\\\end{bmatrix}\\ (vi)\begin{bmatrix}3 & -1 & 3\\-1 & 0 & 2\\\end{bmatrix}\begin{bmatrix}2 & -3 \\1 & 0 \\3 & 1 \end{bmatrix}\\[/Tex]

Solution:

(i) [Tex]{\left[\begin{array}{cc} a & b \\ -b & a \end{array}\right]\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right]} \\ =\left[\begin{array}{cc} a(a)+b(b) & a(-b)+b(a) \\ -b(a)+a(b) & -b(-b)+a(a) \end{array}\right] \\ =\left[\begin{array}{cc} a^{2}+b^{2} & -a b+a b \\ -a b+a b & b^{2}+a^{2} \end{array}\right] \\ =\left[\begin{array}{cc} a^{2}+b^{2} & 0 \\ 0 & b^{2}+a^{2} \end{array}\right] [/Tex]

(ii) [Tex]{\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]\left[\begin{array}{lll} 2 & 3 & 4 \end{array}\right]} \\ =\left[\begin{array}{lll} 1(2) & 1(3) & 1(4) \\ 2(2) & 2(3) & 2(4) \\ 3(2) & 3(3) & 3(4) \end{array}\right] \\ =\left[\begin{array}{lll} 2 & 3 & 4 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \end{array}\right] [/Tex]

(iii) [Tex]{\left[\begin{array}{cc} 1 & -2 \\ 2 & 3 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right]} \\ =\left[\begin{array}{llll} 1(1)-2(2) & 1(2)-2(3) & 1(3)-2(1) \\ 2(1)+3(2) & 2(2)+3(3) & 2(3)+3(1) \end{array}\right] \\ =\left[\begin{array}{lll} 1-4 & 2-6 & 3-2 \\ 2+6 & 4+9 & 6+3 \end{array}\right] \\ =\left[\begin{array}{ccc} -3 & -4 & 1 \\ 8 & 13 & 9 \end{array}\right] [/Tex]

(iv) [Tex]\left[\begin{array}{ccc} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{array}\right]\left[\begin{array}{rrr} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{array}\right] \\ =\left[\begin{array}{l} 2(1)+3(0)+4(3) & 2(-3)+3(2)+4(0) & 2(5)+3(4)+4(5) \\ 3(1)+4(0)+5(3) & 3(-3)+4(2)+5(0) & 3(5)+4(4)+5(5) \\ 4(1)+5(0)+6(3) & 4(-3)+5(2)+6(0) & 4(5)+5(4)+6(5) \end{array}\right] \\ =\left[\begin{array}{lll} 2+0+12 & -6+6+0 & 10+12+20 \\ 3+0+15 & -9+8+0 & 15+16+25 \\ 4+0+18 & -12+10+0 & 20+20+30 \end{array}\right] \\ =\left[\begin{array}{lll} 14 & 0 & 42 \\ 18 & -1 & 56 \\ 22 & -2 & 70 \end{array}\right] [/Tex]

(v) [Tex]\left[\begin{array}{cc} 2 & 1 \\ 3 & 2 \\ -1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 1 \\ -1 & 2 & 1 \end{array}\right] \\ =\left[\begin{array}{cccc} 2(1)+1(-1) & 2(0)+1(2) & 2(1)+1(1) \\ 3(1)+2(-1) & 3(0)+2(2) & 3(1)+2(1) \\ -1(1)+1(-1) & -1(0)+1(2) & -1(1)+1(1) \end{array}\right] \\ =\left[\begin{array}{ccc} 2-1 & 0+2 & 2+1 \\ 3-2 & 0+4 & 3+2 \\ -1-1 & 0+2 & -1+1 \end{array}\right] \\ =\left[\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 5 \\ -2 & 2 & 0 \end{array}\right] [/Tex]

(vi) [Tex]{\left[\begin{array}{ccc} 3 & -1 & 3 \\ -1 & 0 & 2 \end{array}\right]\left[\begin{array}{cc} 2 & -3 \\ 1 & 0 \\ 3 & 1 \end{array}\right]} \\ =\left[\begin{array}{cc} 3(2)-1(1)+3(3) & 3(-3)-1(0)+3(1) \\ -1(2)+0(1)+2(3) & -1(-3)+0(0)+2(1) \end{array}\right] \\ =\left[\begin{array}{cc} 6-1+9 & -9-0+3 \\ -2+0+6 & 3+0+2 \end{array}\right] \\ =\left[\begin{array}{cc} 14 & -6 \\ 4 & 5 \end{array}\right] [/Tex]

Question 4. If [Tex]A=\begin{bmatrix}1 & 2 & -3\\5 & 0 & 2\\1 & -1 & 1\end{bmatrix}, B=\begin{bmatrix}3 & -1 & 2\\4 & 2 & 5\\2 & 0 & 3\end{bmatrix}and\: C=\begin{bmatrix}4 & 1 & 2\\0 & 3 & 2\\1 & -2 & 3\end{bmatrix}  [/Tex], then compute (A + B) and (B – C). Also, verify that A + (B – C) = (A + B) – C.

Solution:

[Tex]\begin{array}{l} A+B=\left[\begin{array}{ccc} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{array}\right]+\left[\begin{array}{ccc} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{array}\right] \\ {\left[\begin{array}{ccc} 1+3 & 2-1 & -3+2 \\ 5+4 & 0+2 & 2+5 \\ 1+2 & -1+0 & 1+3 \end{array}\right]=\left[\begin{array}{cccc} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4 \end{array}\right]} & \\ B-C=\left[\begin{array}{ccc} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{array}\right]-\left[\begin{array}{ccc} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{array}\right]=\left[\begin{array}{ccc} 3-4 & -1-1 & 2-2 \\ 4-0 & 2-3 & 5-2 \\ 2-1 & 0+2 & 3-3 \end{array}\right]=\left[\begin{array}{ccc} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{array}\right] \end{array}[/Tex]

Now we have to show A + (B – C) = (A + B) – C

[Tex]\Rightarrow\left[\begin{array}{ccc} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{array}\right]+\left[\begin{array}{ccc} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{array}\right]=\left[\begin{array}{ccc} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4 \end{array}\right]-\left[\begin{array}{ccc} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ccc} 1-1 & 2-2 & -3+0 \\ 5+4 & 0-1 & 2+3 \\ 1+1 & -1+2 & 1+0 \end{array}\right]=\left[\begin{array}{ccc} 4-4 & 1-1 & -1-2 \\ 9-0 & 2-3 & 7-2 \\ 3-1 & -1+2 & 4-3 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ccc} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{array}\right]=\left[\begin{array}{ccc} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{array}\right][/Tex]

 L.H.S = R.H.S.

Hence, Proved 

Question 5. If[Tex] A=\begin{bmatrix}2/3 & 1 & 5/3\\1/3 & 2/3 & 4/3\\7/3 & 2 & 2/3\end{bmatrix}and \ B=\begin{bmatrix}2/5 & 3/5 & 1\\1/5 & 2/5 & 4/5\\7/5 & 6/5 & 2/5\end{bmatrix}  [/Tex], then compute 3A – 5B.

Solution:

[Tex]\begin{array}{l} 3 A -5 B =3\left[\begin{array}{ccc} \frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{array}\right]-5\left[\begin{array}{ccc} \frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{array}\right] \\ =\left[\begin{array}{rrr} 2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2 \end{array}\right]-\left[\begin{array}{ccc}\\ 2 -2 & 3-3 & 5 -5 \\ 1 -1 & 2-2 & 4  -4 \\ 7  -7 & 6-6 & 2  -2 \end{array}\right]=\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \end{array}[/Tex]

Question 6.  Simplify [Tex]cosθ\begin{bmatrix}cosθ & sinθ \\-sinθ & cosθ \\\end{bmatrix}+sinθ\begin{bmatrix}sinθ& -cosθ\\cosθ & sinθ\\\end{bmatrix}[/Tex]

Solution:

[Tex]\begin{aligned} &\cos \theta\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right]+\sin \theta\left[\begin{array}{cc} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{array}\right]\\ &=\left[\begin{array}{cc} \cos ^{2} \theta & \sin \theta \cos \theta \\ -\sin \theta \cos \theta & \cos ^{2} \theta \end{array}\right]+\left[\begin{array}{cc} \sin ^{2} \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin ^{2} \theta \end{array}\right]\\ &=\left[\begin{array}{cc} \cos ^{2} \theta+\sin ^{2} \theta & \sin \theta \cos \theta-\sin \theta \cos \theta \\ -\sin \theta \cos \theta+\sin \theta \cos \theta & \cos ^{2} \theta+\sin ^{2} \theta \end{array}\right]\\ &=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1 \mid\right.\\ \end{aligned}[/Tex]

= 1 = identity matrix 

Question 7. Find X and Y if

(i) [Tex]X + Y =\begin{bmatrix}7 & 0 \\2 & 5 \\\end{bmatrix}\:and\:X-Y=\begin{bmatrix}3 & 0 \\0 & 3 \\\end{bmatrix}\\ [/Tex]

(ii) [Tex]2X+3Y=\begin{bmatrix}2 & 3\\4 & 0 \\\end{bmatrix}\:and\:3X+2Y=\begin{bmatrix}2 & -2 \\-1 & 5 \\\end{bmatrix}[/Tex]

Solution:

(i) Given: [Tex]X+Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right] \ \ \ -(1)[/Tex]

[Tex]X-Y=\left[\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right] \ \ \ -(2)[/Tex]

 Adding (1) and (2), we get

[Tex]2 X=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right]+\left[\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right]\\ =\left[\begin{array}{ll} 7+3 & 0+0 \\ 2+0 & 5+3 \end{array}\right]\\ =\left[\begin{array}{cc} 10 & 0 \\ 2 & 8 \end{array}\right]\\ \Rightarrow X=\frac{1}{2}\left[\begin{array}{ll} 10 & 0 \\ 2 & 8 \end{array}\right]=\left[\begin{array}{ll} 5 & 0 \\ 1 & 4 \end{array}\right]\\ X+Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 5 & 0 \\ 1 & 4 \end{array}\right]+Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right]\\ \Rightarrow Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right]-\left[\begin{array}{ll} 5 & 0 \\ 1 & 4 \end{array}\right]\\ \Rightarrow Y=\left[\begin{array}{ll} 2 & 0 \\ 1 & 1 \end{array}\right][/Tex]

(ii) Given: [Tex]2 X+3 Y=\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right] \ \ \ -(1)\\ 3 X+2 Y=\left[\begin{array}{cc} 2 & -2 \\ -1 & 5 \end{array}\right] \ \ \ -(2)[/Tex]

Now, multiply equation (1) by 2 and equation (2) by 3 we get

[Tex]4 X+6 Y=\left[\begin{array}{ll} 4 & 6 \\ 8 & 0 \end{array}\right] \ \ \ -(3)\\ 9 X+6 Y=\left[\begin{array}{cc} 6 & -6 \\ -3 & 15 \end{array}\right] \ \ \ -(4)[/Tex]

Subtracting equation (4) from (3), we get,

[Tex](4 X+6 Y)-(9 X+6 Y)=\left[\begin{array}{ll} 4 & 6 \\ 8 & 0 \end{array}\right]-\left[\begin{array}{cc} 6 & -6 \\ -3 & 15 \end{array}\right]\\ \Rightarrow-5 X=\left[\begin{array}{cc} 4-6 & 6-(-6) \\ 8-(-3) & 0-15 \end{array}\right]\\ =\left[\begin{array}{cc} -2 & 12 \\ 11 & -15 \end{array}\right]\\ \Rightarrow X=-\frac{1}{5}\left[\begin{array}{cc} -2 & 12 \\ 11 & -15 \end{array}\right]=\left[\begin{array}{cc} \frac{2}{5} & \frac{-12}{5} \\ \frac{-11}{5} & 3 \end{array}\right] [/Tex]

[Tex]2 X +3 Y =\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right] \\ \Rightarrow 2\left[\begin{array}{ll} \frac{2}{5} & \frac{-12}{5} \\ \frac{-11}{5} & 3 \end{array}\right]+3 Y =\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right] \\ \Rightarrow\left[\begin{array}{ll} \frac{4}{5} & \frac{-24}{5} \\ \frac{-22}{5} & 6 \end{array}\right]+3 Y =\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right] \\ \Rightarrow 3 Y =\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right]-\left[\begin{array}{cc} \frac{4}{5} & \frac{-24}{5} \\ \frac{-22}{5} & 6 \end{array}\right] \\ \Rightarrow Y=\frac{1}{3}\left[\begin{array}{cc} \frac{6}{5} & \frac{39}{5} \\ \frac{42}{5} & -6 \end{array}\right] \\ \Rightarrow Y=\left[\begin{array}{cc} \frac{2}{5} & \frac{13}{5} \\ \frac{14}{5} & -2 \end{array}\right] [/Tex]

Question 8. Find X, if [Tex]Y=\begin{bmatrix}3 & 2 \\1 & 4 \\\end{bmatrix}   [/Tex]and [Tex]2X + Y=\begin{bmatrix}1 &0\\-3 & 2 \\\end{bmatrix}[/Tex]

Solution:

[Tex]\begin{array}{l} 2 X+Y=\left[\begin{array}{cc} 1 & 0 \\ -3 & 2 \end{array}\right] \\ \Rightarrow 2 X+\left[\begin{array}{cc} 3 & 2 \\ 1 & 4 \end{array}\right]=\left[\begin{array}{cc} 1 & 0 \\ -3 & 2 \end{array}\right] \\ \Rightarrow 2 X=\left[\begin{array}{cc} 1 & 0 \\ -3 & 2 \end{array}\right]-\left[\begin{array}{cc} 3 & 2 \\ 1 & 4 \end{array}\right] \\ \Rightarrow 2 X=\left[\begin{array}{cc} 1-3 & 0-2 \\ -3 & -1 & 2-4 \end{array}\right] \\ \Rightarrow 2 X=\left[\begin{array}{cc} -2 & -2 \\ -4 & -2 \end{array}\right] \\ \Rightarrow X=\frac{1}{2}\left[\begin{array}{cc} -2 & -2 \\ -4 & -2 \end{array}\right] \\ ∴ X=\left[\begin{array}{cc} -1 & -1 \\ -2 & -1 \end{array}\right] \end{array}[/Tex]

Question 9. Find X and Y, if [Tex]2\begin{bmatrix}1 &  3\\0 & x \\\end{bmatrix}+\begin{bmatrix}y & 0 \\1 & 2 \\\end{bmatrix}=\begin{bmatrix}5 & 6 \\1 & 8 \\\end{bmatrix}[/Tex]

Solution:

Given: [Tex]2\left[\begin{array}{ll} 1 & 3 \\ 0 & x \end{array}\right]+\left[\begin{array}{ll} y & 0 \\ 1 & 2 \end{array}\right]=\left[\begin{array}{ll} 5 & 6 \\ 1 & 8 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 2 & 6 \\ 0 & 2 x \end{array}\right]+\left[\begin{array}{ll} y & 0 \\ 1 & 2 \end{array}\right]=\left[\begin{array}{ll} 5 & 6 \\ 1 & 8 \end{array}\right]\\ \Rightarrow\left[\begin{array}{cc} 2+y & 6 \\ 1 & 2 x+x \end{array}\right]^{2}=\left[\begin{array}{cc} 5 & 6 \\ 1 & 8 \end{array}\right][/Tex]

Equating corresponding entries, we have 

2 + y = 5 and 2x + 2 = 8

y = 5 – 2 and 2(x + 1) = 8

y = 3 and x + 1 = 4

Therefore, y = 3 and x = 3 

Question 10. Solve the equation for x, y, z and t, if [Tex]2\begin{bmatrix}x & z\\y & t \\\end{bmatrix}+3\begin{bmatrix}1 & -1\\0 & 2 \\\end{bmatrix}=3\begin{bmatrix}3 & 5\\4 &  6\\\end{bmatrix}[/Tex]

Solution:

Given: [Tex]2\left[\begin{array}{ll} x & z \\ y & t \end{array}\right]+3\left[\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right]=3\left[\begin{array}{ll} 3 & 5 \\ 4 & 6 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 2 x & 2 z \\ 2 y & 2 t \end{array}\right]+\left[\begin{array}{cc} 3 & -3 \\ 0 & 6 \end{array}\right]=\left[\begin{array}{cc} 9 & 15 \\ 12 & 18 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 2 x+3 & 2 z-3 \\ 2 y+0 & 2 t+6 \end{array}\right]=\left[\begin{array}{cc} 9 & 15 \\ 12 & 18 \end{array}\right][/Tex]

On comparing both sides, we have 

2x + 3 = 9 ⇒ 2x = 9 – 3 ⇒ 2x = 6 ⇒ x = 3

2z – 3 = 15 ⇒ 2z = 15 + 3 ⇒ 2z = 18 ⇒ z = 9

2y = 12 ⇒ y = 6

2t + 6 = 18 ⇒ 2t = 18 – 6 ⇒ 2t = 12 ⇒ t = 6 

Therefore, x = 3, y = 6, z = 9, t = 6 

Question 11. If [Tex]x\left[\begin{array}{l} 2 \\ 3 \end{array}\right]+y\left[\begin{array}{c} -1 \\ 1 \end{array}\right]=\left[\begin{array}{l} 10 \\ 5 \end{array}\right] [/Tex], find the values of x and y.

Solution:

Given: [Tex]x\left[\begin{array}{l} 2 \\ 3 \end{array}\right]+y\left[\begin{array}{c} -1 \\ 1 \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right] \\ \Rightarrow\left[\begin{array}{c} 2 x \\ 3 x \end{array}\right]+\left[\begin{array}{c} -y \\ y \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right] \\ \Rightarrow\left[\begin{array}{c} 2 x-y \\ 3 x+y \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right] [/Tex]

Equating corresponding entries, we have

2x – y = 10           -(1)

3x + y = 5           -(2)

Adding eq.(1) and (2), we have 5x = 15 ⇒ x = 3

Putting x = 3 in eq.(2)

9 + y = 5 ⇒ y = -4

Therefore, x = 3 and y = -4

Question 12. Given [Tex]3\left[\begin{array}{cc} x & y \\ z & w \end{array}\right]=\left[\begin{array}{cc} x & 0 \\ -1 & 2 w \end{array}\right]+\left[\begin{array}{cc} 4 & x+y \\ z+w & 3 \end{array}\right] [/Tex], find the values of x, y, z and w. 

Solution:

Given: [Tex]3\left[\begin{array}{cc} x & y \\ z & w \end{array}\right]=\left[\begin{array}{cc} x & 0 \\ -1 & 2 w \end{array}\right]+\left[\begin{array}{cc} 4 & x+y \\ z+w & 3 \end{array}\right][/Tex]

[Tex]\Rightarrow\left[\begin{array}{ll} 3 x & 3 y \\ 3 z & 3 w \end{array}\right]=\left[\begin{array}{cc} x+4 & 6+x+y \\ -1+z+w & 2 w+3 \end{array}\right][/Tex]

Equating corresponding entries, we have

3x = x + 4 ⇒ 2x = 4 ⇒ x = 2

and 3y = 6 + x + y

⇒ 2y = 6 + 2

⇒ 2y = 8

⇒ y = 4

and 3z = -1 + z + w ⇒ 2z – w = – 1           -(1)

and 3w = 2w + 3 ⇒ w = 3

Putting w = 3 in eq(i), 2z – 3 = -1  

⇒ 2z = 2 ⇒ z = 1

Therefore, x = 2, y = 4, z = 1, w = 3

Question 13. If [Tex]F(x)=\left[\begin{array}{ccc} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{array}\right] [/Tex], show that F(x) F(y) = F(x + y).

Solution:

[Tex]\begin{aligned} &\text {  } F(x)=\left[\begin{array}{ccc} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{array}\right], F(y)=\left[\begin{array}{ccc} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{array}\right]\\ &F(x+y)=\left[\begin{array}{ccc} \cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1 \end{array}\right]\\ &F(x) F(y)=\left[\begin{array}{ccc} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned}[/Tex]

[Tex]=\left[\begin{array}{ccc} \cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1 \end{array}\right][/Tex]

[Tex]=\left[\begin{array}{ccc} \cos x \cos y-\sin x \sin y+0 & -\cos x \sin y-\sin x \cos y+0 & 0 \\ \sin x \cos y+\cos x \sin y+0 & -\sin x \sin y+\cos x \cos y+0 & 0 \\ 0 & 0 & 0 \end{array}\right][/Tex]

= F(x + y) 

= F(x) F(y) = F(x + y) 

Question 14. Show that

[Tex](i) \left[\begin{array}{rr} 5 & -1 \\ 6 & 7 \end{array}\right]\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right] \neq\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]\left[\begin{array}{rr} 5 & -1 \\ 6 & 7 \end{array}\right][/Tex]

[Tex]\text { (ii) }\left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right]\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right] \neq\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right][/Tex]

Solution:

(i) L.H.S =[Tex]\left[\begin{array}{cc} 5 & -1 \\ 6 & 7 \end{array}\right]\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]\\ =\left[\begin{array}{ll} 5(2)-1(3) & 5(1)-1(4) \\ 6(2)+7(3) & 6(1)+7(4) \end{array}\right]\\ =\left[\begin{array}{cc} 10-3 & 5-4 \\ 12+21 & 6+28 \end{array}\right]\\ =\left[\begin{array}{cc} 7 & 1 \\ 33 & 34 \end{array}\right] \ \ \ -(1)[/Tex]

R.H.S = [Tex]\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]\left[\begin{array}{ll} 5 & -1 \\ 6 & 7 \end{array}\right]\\ =\left[\begin{array}{ll} 2(5)+1(6) & 2(-1)+1(7) \\ 3(5)+4(6) & 3(-1)+4(7) \end{array}\right]\\ =\left[\begin{array}{cc} 10+6 & -2+7 \\ 15+24 & -3+28 \end{array}\right]\\ =\left[\begin{array}{ll} 16 & 5 \\ 39 & 25 \end{array}\right] \ \ \ -(2) [/Tex]

Therefore, from (1) and (2), we get

[Tex]\text {  }\left[\begin{array}{rr} 5 & -1 \\ 6 & 7 \end{array}\right]\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right] \neq\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]\left[\begin{array}{rr} 5 & -1 \\ 6 & 7 \end{array}\right][/Tex]

i.e. L.H.S. ≠ R.H.S

(ii) L.H.S = [Tex]\left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right]\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right] [/Tex]

Multiply both the matrices 

[Tex]=\left[\begin{array}{lll} 1(-1)+2(0)+3(2) & 1(1)+2(-1)+3(3) & 1(0)+2(1)+3(4) \\ 0(-1)+1(0)+0(2) & 0(1)+1(-1)+0(3) & 0(0)+1(1)+0(4) \\ 1(-1)+1(0)+0(2) & 1(1)+1(-1)+0(3) & 1(0)+1(1)+0(4) \end{array}\right]\\ =\left[\begin{array}{ccc} 5 & 8 & 14 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{array}\right] [/Tex]

R.H.S.= [Tex]\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right][/Tex]

[Tex]\begin{array}{l} =\left[\begin{array}{ccc} -1(1)+1(0)+0(1) & (-1) 2+1(1)+0(1) & (-1) 3+1(0)+0(0) \\ 0(1)+(-1) 0+1(1) & (0) 2+1(-1)+1(1) & (0) 3+0(-1)+1(0) \\ 2(1)+3(0)+4(1) & 2(2)+3(1)+4(1) & 2(3)+3(0)+4(0) \end{array}\right] \\ =\left[\begin{array}{ccc} -1 & -1 & -3 \\ 1 & 0 & 0 \\ 6 & 11 & 6 \end{array}\right] \end{array}[/Tex]

Therefore,

L.H.S. ≠ R.H.S.

i.e.[Tex]\text { }\left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right]\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right] \neq\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right][/Tex]

Question 15. Find A2 – 5A + 6I, if [Tex]A=\begin{bmatrix}2&0&1\\2&1&3\\1&-1&0\\\end{bmatrix}[/Tex]

Solution:

[Tex]\begin{aligned} &A^{2}-5 A+6 I=\left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{array}\right]\left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{array}\right]-5\left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{array}\right]+6\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\\ &=\left[\begin{array}{lll} 4+0+1 & 0+0-1 & 2+0+0 \\ 4+2+3 & 0+1-3 & 2+3+0 \\ 2-2+0 & 0-1-0 & 1-3+0 \end{array}\right]-\left[\begin{array}{ccc} 10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0 \end{array}\right]+\left[\begin{array}{lll} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right] \end{aligned}[/Tex]

[Tex]\left.\begin{array}{l} =\left[\begin{array}{ccc} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{array}\right]-\left[\begin{array}{ccc} 10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0 \end{array}\right]+\left[\begin{array}{ccc} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right] \end{array}\right][/Tex]

[Tex]\begin{array}{l} =\left[\begin{array}{ccc} 5-10+6 & -1-0+0 & 2-5+0 \\ 9-10+0 & -2-5+6 & 5-15+0 \\ 0-5+0 & -1+5+0 & -2+0+6 \end{array}\right] \\ =\left[\begin{array}{ccc} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{array}\right] \end{array}[/Tex]

Question 16. If [Tex]A =\begin{bmatrix}1&0&2\\0&2&1\\2&0&3\\\end{bmatrix} [/Tex], prove that A3 – 6A2 + 7A + 2I = 0

Solution:

[Tex]A=\begin{bmatrix}1&0&2\\0&2&1\\2&0&3\\\end{bmatrix} A^{2} \\=A * A=\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right]\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right] \\ =\left[\begin{array}{lll} 1+0+4 & 0+0+0 & 2+0+6 \\ 0+0+2 & 0+4+0 & 0+2+3 \\ 2+0+6 & 0+0+0 & 4+0+9 \end{array}\right] \\ =\left[\begin{array}{lll} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{array}\right] [/Tex]

[Tex]6 A^{2} =6\left[\begin{array}{lll} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{array}\right]=\left[\begin{array}{ccc} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{array}\right] \\ A^{3} =A^{2} \times A \\ =\left[\begin{array}{lll} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{array}\right]\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right] \\ =\left[\begin{array}{lll} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{array}\right][/Tex]

[Tex]A^{3} – 6 A^{2}+7 A+2 I=\left[\begin{array}{ccc} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{array}\right]-\left[\begin{array}{ccc} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{array}\right]+\left[\begin{array}{ccc} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{array}\right]+\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right]\\ =\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] [/Tex]

= 0 (Zero matrix)

= R.H.S.

Hence Proved

Question 17. If [Tex]A=\begin{bmatrix}3&-2\\4&-2\\\end{bmatrix} and \:I=\begin{bmatrix}1&0\\0&1\\\end{bmatrix} [/Tex], find k so that A2 = kA – 2I

Solution:

Given: 

[Tex]A=\left[\begin{array}{rr} 3 & -2 \\ 4 & -2 \end{array}\right] \text { and } I=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\\ A^{2}=k A-2 I \Rightarrow\left[\begin{array}{ll} 3 & -2 \\ 4 & -2 \end{array}\right]\left[\begin{array}{ll} 3 & -2 \\ 4 & -2 \end{array}\right]=k\left[\begin{array}{ll} 3 & -2 \\ 4 & -2 \end{array}\right]-2\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\\ \Rightarrow\left[\begin{array}{cc} 9-8 & -6+4 \\ 12-8 & -8+4 \end{array}\right]=\left[\begin{array}{cc} 3 k & -2 k \\ 4 k & -2 k \end{array}\right]-\left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 1 & -2 \\ 4 & -4 \end{array}\right]=\left[\begin{array}{ll} 3 k-2 & -2 k-0 \\ 4 k-0 & -2 k-2 \end{array}\right][/Tex]

Equating corresponding entries, we have 

3k – 2 = 1 

3k = 3  

k = 1

and 4k = 4 

k = 1 

and -4 = -2k – 2

2k = 2 

k = 1

Therefore, k = 1 

Question 18. If [Tex]A =\begin{bmatrix}0&-tan\frac{α}{2}\\tan\frac{α}{2}&0\\\end{bmatrix}  [/Tex]and I is the identity matrix of order 2, show that I + A = (I – A)[Tex]\begin{bmatrix}cosα&-sinα\\sinα&cosα\\\end{bmatrix}[/Tex]

Solution:

[Tex]\begin{array}{l} \text { L.H.S. } I+A=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]+\left[\begin{array}{cc} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{array}\right]=\left[\begin{array}{cc} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{array}\right] \\ \text { Now, } I-A=\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]-\left[\begin{array}{cc} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{array}\right]=\left[\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right] \\ \text { R.H.S. }=(I-A)\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right]=\left[\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right]\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right] \end{array}[/Tex]

[Tex]\begin{aligned} &=\left[\begin{array}{ccc} \cos \alpha+\sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha+\cos \alpha \tan \frac{\alpha}{2} \\ -\cos \alpha \tan \frac{\alpha}{2}+\sin \alpha & \sin \alpha \tan \frac{\alpha}{2}+\cos \alpha \\ \end{array}\right]\\ &\text {} \end{aligned}[/Tex]

[Tex]=\left[\begin{array}{ccc} \cos \alpha \cos \frac{\alpha}{2}+\sin \alpha \sin \frac{\alpha}{2}{\cos \frac{\alpha}{2}}  & \frac{\alpha \sin \alpha \cos \frac{\alpha}{2}+\cos \alpha \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \ \\ \hline \frac{-\cos \alpha \sin \frac{\alpha}{2}+\sin \alpha \cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{\sin \alpha \sin \frac{\alpha}{2}+\cos \alpha \cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \end{array}\right][/Tex]

[Tex]\begin{aligned} &=\left[\begin{array}{cc} \frac{\cos \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} & \frac{-\sin \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} \\ \frac{\sin \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} & \frac{\cos \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} \end{array}\right]=\left[\begin{array}{ccc} \frac{\cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{-\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \\ \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{\cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \end{array}\right]=\left[\begin{array}{cc} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{array}\right]\end{aligned}[/Tex]

L.H.S. = R.H.S.

Hence, Proved. 

Question 19. A trust fund has ₹30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ₹30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

(a) Rs.1800

 (b) Rs.2000

Solution:

Let invested in the first bond = Rs x 

Then, the sum of money invested in the second bond = ₹(30000 – x)

It is given that the first bond pays 5% interest per year, and the second bond pays 7% interest per year.

Thus, in order to obtain an annual total interest of ₹1800, we get:

[Tex]\begin{bmatrix}x&30000-x\end{bmatrix}\begin{bmatrix}5/100\\7/100\end{bmatrix}=1800[/Tex]

⇒ 5x/100 + 7(30000 − x)/100 = 1800

⇒ 5x + 210000 -7x = 180000

⇒ 210000 -2x = 180000

⇒ 2x = 210000 – 180000

⇒ 2x = 30000

⇒ x = 15000

Therefore, in order to obtain an annual total interest of ₹1800, the trust fund should invest ₹15000 in the first bond and the remaining ₹15000 in the second bond.

Hence, the amount invested in each type of the bonds can be represented in matrix form with each column corresponding to a different type of bond as:

X = [Tex]\begin{bmatrix}x&30000-x\end{bmatrix}[/Tex]

Hence, the interest obtained after one year can be expressed in matrix representation as:

[Tex]\begin{bmatrix}x&30000-x\end{bmatrix}\begin{bmatrix}5/100\\7/100\end{bmatrix}=2000[/Tex]

⇒ 5x/100 + 7(30000 − x)/100 = 2000

⇒ 5x + 210000 − 7x = 200000

⇒ 210000 − 2x = 200000

⇒ 2x = 210000 – 200000

⇒ 2x = 10000

⇒ x = 5000

Therefore, in order to obtain an annual total interest of ₹2000, the trust fund should invest ₹5000 in the first bond and the remaining ₹(30000 − 5000) = ₹25000 in the second bond.

Question 20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs.80, Rs.60 and Rs.40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra. 

Solution:

Let the number of books as 1 × 3 matrix = B = [Tex]\begin{bmatrix}10 dozen&8dozen&10dozen\\10*12=120&8*12=96&10*12=120\\\end{bmatrix}[/Tex]

Let the selling prices of each book is a 3 × 1 matrix S = [Tex]\begin{bmatrix}80\\60\\40\end{bmatrix}[/Tex]

Therefore, Total amount received by selling all books = BS = [Tex]\begin{bmatrix}120&96&120\end{bmatrix}\begin{bmatrix}80\\60\\40\end{bmatrix}[/Tex]

[Tex]\begin{bmatrix}120(80)&96(60)&120(40)\end{bmatrix}=\begin{bmatrix}9600&5760&4800\end{bmatrix}=\begin{bmatrix}20160\end{bmatrix}[/Tex]

Therefore, Total amount received by selling all the books = Rs 20,160

Assume X, Y, Z, W, and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3, and p × k, respectively. Choose the correct answer in Exercises 21 and 22. 

Question 21. The restriction on n, k and p so that PY + WY will be defined are:

(A) k = 3, p = n                 (B) k is arbitrary, p = 2

(C) p is arbitrary, k = 3    (D) k = 2, p = 3

Solution:

Since, Matrices P and Y are of the orders p × k and 3 × k respectively.

Therefore, matrix PY will be defined if k = 3.

Then, PY will be of the order p × k = p × 3.

Matrices W and Y are of the orders n × 3 and 3 × k = 3 × 3 respectively.

As, the number of columns in W is equal to the number of rows in Y, Matrix WY is well-defined and is of the order n × 3.

Matrices PY and WY can be added only when their orders are the same.

Therefore, PY is of the order p × 3 and WY is of the order n × 3.

Thus, we must have p = n.

Therefore, k = 3 and p = n are the restrictions on n, k and p so that PY + WY will be defined.

Therefore, answer is (A)

Question 22. If n = p, then the order of the matrix 7X – 5Z is:

(A) p × 2                (B) 2 × n 

(C) n × 3                (D) p × n

Solution:

Matrix X is of the order 2 × n.

Therefore, matrix 7X is also of the same order.

Matrix Z is of order 2 × p = 2 × n               -(∵ p = n)

Then, Matrix 5Z is also of the same order.

Now, both the matrices 7X and 5Z are of the order 2 × n.

Thus, matrix 7X – 5Z is well- defined and is of the order 2 × n.

Therefore, answer is (B)



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads