Related Articles
Class 11 RD Sharma Solutions – Chapter 6 Graphs of Trigonometric Functions – Exercise 6.3
• Last Updated : 08 May, 2021

### Question 1: y = sin2 x

Solution:

As we know that,

y = sin2 x =

On shifting the origin at (0, 1/2), we get

X = x and Y =

On substituting these values, we get

The maximum and minimum values of Y are  and  respectively and shift it by 1/2 to the up.

As the equation in the form of y = – f(x), the graph become inverted of y = f(x)

### Question 2: y = cos2 x

Solution:

As we know that,

y = cos2 x =

On shifting the origin at , we get

X = x and Y =

On substituting these values, we get

The maximum and minimum values of Y are  and  respectively and shift it by 1/2 to the up.

### Question 3: y = sin2

Solution:

To obtain this graph y-0 = sin2

On shifting the origin at (,0), we get

X =  and Y = y – 0

On substituting these values, we get

Y = sin2 X

First we draw the graph of Y = sin2 X and shift it by π/4 to the right.

### Question 4: y = tan 2x

Solution:

To obtain this graph y = tan 2x,

First we draw the graph of y = tan x and then divide the x-coordinates of the points where it crosses x-axis by 2.

### Question 5: y = 2 tan 3x

Solution:

To obtain this graph y = 2 tan 3x,

First we draw the graph of y = tan x and then divide the x-coordinates of the points where it crosses x-axis by 3.

Stretch the graph vertically by the factor of 2.

### Question 6: y = 2 cot 2x

Solution:

To obtain this graph y = 2 cot 2x,

First we draw the graph of y = cot x and then divide the x-coordinates of the points where it crosses x-axis by 2.

Stretch the graph vertically by the factor of 2.

### Question 7: y = cos 2x, y = cos

Solution:

Graph 1:

y = cos2 x

As we know that,

y = cos2 x =

On shifting the origin at (0, 1/2), we get

X = x and Y =

On substituting these values, we get

The maximum and minimum values of Y are  and  respectively and shift it by 1/2 to the up.

Graph 2:

To obtain this graph y-0 = cos (2x-) = cos 2(x-)

On shifting the origin at (π/6, 0), we get

X =  and Y = y – 0

On substituting these values, we get

Y = cos 2X

First we draw the graph of Y = cos 2X and shift it by π/6 to the right.

The graph y = cos2 x and y = cos  are on same axes are as follows:

### Question 8: y = sin2 x, y = sin x

Solution:

Graph 1:

y = sin2 x

As we know that,

y = sin2 x =

On shifting the origin at (0, ), we get

X = x and Y =

On substituting these values, we get

The maximum and minimum values of Y are  and  respectively and shift it by 1/2 to the up.

As the equation in the form of y = – f(x), the graph become inverted of y = f(x)

Graph 2:

y = sin x

The graph y = sin2 x and y = sin x are on same axes are as follows:

### Question 9: y = tan x, y = tan 2x

Solution:

Graph 1:

y = tan x

Graph 2:

y = tan2 x

The graph y = tan x and y = tan2 x are on same axes are as follows:

### Question 10: y = tan 2x, y = tan x

Solution:

Graph 1:

To obtain this graph y = tan 2x,

First we draw the graph of y = tan x and then divide the x-coordinates of the points where it crosses x-axis by 2.

Graph 2:

y = tan x

The graph y = tan 2x and y = tan x are on same axes are as follows:

My Personal Notes arrow_drop_up