Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Class 11 RD Sharma Solutions – Chapter 29 Limits – Exercise 29.8 | Set 2

  • Last Updated : 08 May, 2021

Question 20. limx→1[(1 + cosπx)/(1 – x)2]

Solution:

We have,

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

limx→1[(1 + cosπx)/(1 – x)2]



Here, x→1, h→0

= Limh→0[{1 + cosπ(1 + h)}/{1 – (1 + h)}2]

= Limh→0[(1 – cosπh)/h2]

= Limh→0[2sin2(πh/2)/h2]

2\lim_{h\to0}[\frac{sin^2(\frac{πh}{2})}{(\frac{2}{π})^2×(\frac{πh}{2})^2}]

= 2π2/4

= π2/2

Question 21. limx→1[(1 – x2)/sinπx]

Solution:



We have,

limx→1[(1 – x2)/sinπx]

Here, x→1, h→0

= limh→0[{1 – (1 – h)2}/sinπ(1 – h)]

= limh→0[(2h – h2)/-sinπh]

= -limh→0[{h(2 – h)}/sinπh]

=\lim_{h\to0}[\frac{(2-h)}{\frac{sinπh}{h}}]

=\lim_{h\to0}[\frac{(2-h)}{(\frac{sinπh}{πh})×π}]

= (2 – 0)/π

= 2/π



Question 22. limx→π/4[(1 – sin2x)/(1 + cos4x)]

Solution:

We have,

limx→π/4[(1 – sin2x)/(1 + cos4x)]

Here, x→π/4, h→0

= limh→0[{1 – sin2(π/4 – h)}/{1 + cos4(π/4 – h)}]

= limh→0[{1 – sin(π/2 – 2h)}/{1 + cos(π – 4h)}]

= limh→0[(1 – cos2h)/(1 – cos4h)]

= limh→0[2sin2h/2sin22h]

=\lim_{h\to0}[\frac{\frac{sin^2h}{h^2}}{\frac{sin^22h}{4h^2}×4}]

= (1/4)

Question 23. limx→π[(1 + cosx)/tan2x]

Solution:

We have,

limx→π[(1 + cosx)/tan2x]

Here, x→π, h→0

= limh→0[{1+cos(π + h)}/tan2(π + h)]

= limh→0[(1 – cosh)/tan2h]

= limh→0[{2sin2(h/2)}/tan2h]

2×\lim_{h\to0}[\frac{sin^2(\frac{h}{2})}{(\frac{h}{2})^2×(\frac{2}{h})^2}]×\lim_{h\to0}[\frac{1}{\frac{tan^2h}{h^2}×h^2}]

= 2/4

= 1/2



Question 24. limn→∞[nsin(π/4n)cos(π/4n)]

Solution:

We have,

limn→∞[nsin(π/4n)cos(π/4n)]

= limn→∞[nsin(π/4n)]Limn→∞[cos(π/4n)]

=\lim_{n\to∞}[\frac{nsin\frac{π}{4n}}{(\frac{π}{4n})}]×(\frac{π}{4n})×1

=(\frac{π}{4})\lim_{n\to∞}[\frac{sin\frac{π}{4n}}{(\frac{π}{4n})}]

Let, y = (π/4n)

If n→∞, y→0.

= (π/4).Limy→0[siny/y]

= (π/4)

Question 25. limn→∞[2n-1sin(a/2n)]

Solution:

We have,

limn→∞[2n-1sin(a/2n)]

=\lim_{n\to∞}[\frac{2^n}{2}×sin(\frac{a}{2^n})]

=\lim_{n\to∞}[\frac{2^n}{2}×\frac{sin(\frac{a}{2^n})}{\frac{a}{2^n}}×\frac{a}{2^n}]

=(\frac{a}{2})\lim_{n\to∞}[\frac{sin\frac{a}{2^n}}{(\frac{a}{2^n})}]

Let, y = (a/2n)

If n→∞, y→0

= (a/2).Limy→0[siny/y]

= (a/2)



Question 26. limn→∞[sin(a/2n)/sin(b/2n)]

Solution:

We have,

limn→∞[sin(a/2n)/sin(b/2n)]

=\lim_{n\to∞}[\frac{sin(\frac{a}{2^n})}{(\frac{a}{2^n})}×(\frac{a}{2^n})]\lim_{n\to∞}[\frac{}{\frac{sin(\frac{b}{2^n})}{(\frac{b}{2^n})}×(\frac{b}{2^n})}]

Let, y = (a/2n) and z = (b/2n)

If n→∞, y→0 and z→0

=\frac{y}{z}\lim_{y\to0}[\frac{siny}{y}]\lim_{z\to0}[\frac{y}{siny}]

=\frac{\frac{a}{2^n}}{\frac{b}{2^n}}

= (a/b)

Question 27. limx→-1[(x2 – x – 2)/{(x2 + x) + sin(x + 1)}]

Solution:



We have,

limx→-1[(x2 – x – 2)/{(x2 + x) + sin(x + 1)}]

= limx→-1[(x2 – x – 2)/{x(x + 1) + sin(x + 1)}]

= limx→-1[(x – 2)(x + 1)/{x(x + 1) + sin(x + 1)}]

Let, y = x + 1

If x→-1, then y→0

= limy→0[y(y – 3)/{y(y – 1) + siny}]

=\lim_{y\to0}[\frac{(y-3)}{(y-1)+\frac{siny}{y}}]

= (0 – 3)/{(0 – 1) + 1}

= -3/0

= ∞

Question 28. limx→2[(x2 – x – 2)/{(x2 – 2x) + sin(x – 2)}]

Solution:

We have,

limx→2[(x2 – x – 2)/{(x2 – 2x) + sin(x – 2)}]

= limx→2[{(x – 2)(x + 1)}/{x(x + 1) + sin(x + 1)}]

Let, y = x – 2

If x→2, then y→0

= limy→0[y(y + 3)/{y(y + 2) + siny}]

\lim_{y\to0}[\frac{(y+3)}{(y+2)+\frac{siny}{y}}]

= (0 + 3)/{(0 + 1) + 1}

= 3/3

= 1

Question 29. limx→1[(1 – x)tan(πx/2)]

Solution:

We have,

 limx→1[(1 – x)tan(πx/2)]

Here, x→1, h→0

= limh→0[{1 – (1 – h)}tan{π/2(1 – h)}]

= limh→0[htan{π/2-πh/2)}

= limh→0[hcot(πh/2)]

=\lim_{h\to0}[\frac{h}{tan(\frac{πh}{2})}]



=\lim_{h\to0}[\frac{1}{\frac{tan(\frac{πh}{2})}{\frac{πh}{2}}×\frac{π}{2}}]

=\frac{1}{\frac{π}{2}}

= (2/π)

Question 30. limx→π/4[(1 – tanx)/(1 – √2sinx)]

Solution:

We have,

limx→π/4[(1 – tanx)/(1 – √2sinx)]

On rationalizing the denominator.

= limx→π/4[{(1 – tanx)(1 – √2sinx)}/(1 – 2sin2x)]

=\lim_{x\to \frac{π}{4}}[\frac{(1-\frac{sinx}{cosx})(1+\sqrt2sinx)}{cos2x}]

=\lim_{x\to \frac{π}{4}}[\frac{(cosx-sinx)(1+\sqrt2sinx)}{cosx.cos2x}]

=\lim_{x\to \frac{π}{4}}[\frac{(cosx-sinx)(1+\sqrt2sinx)}{cosx.(cos^2x-sin^2x)}]

=\lim_{x\to \frac{π}{4}}[\frac{(cosx-sinx)(1+\sqrt2sinx)}{cosx.(cosx-sinx)(cosx+sinx)}]

=\frac{1+\sqrt2×\frac{1}{\sqrt2}}{(\frac{1}{\sqrt2})(\frac{1}{\sqrt2}+\frac{1}{\sqrt2})}

= 2/1

= 2

Question 31. limx→π[{√(2 + cosx) – 1}/(π – x)2]

Solution:

We have,

limx→π[{√(2 + cosx) – 1}/(π – x)2]

Let, y = [π – x]

Here, x→π, y→0



=\lim_{y\to0}[\frac{\sqrt{2+cos(π-y)}-1}{y^2}]

= limy→0[{√(2 – cosy) – 1}/y2]

On rationalizing the numerator, we get

=\lim_{y\to0}[\frac{2-cosy-1}{y^2(\sqrt{2-cosy}-1)}]

= limy→0[{1 – cosy}/y2{√(2 – cosy) – 1}]

=\lim_{y\to0}[\frac{2sin^2\frac{y}{2}}{y^2(\sqrt{2-cosx}+1)}]

=\lim_{y\to0}[\frac{2sin^2\frac{y}{2}}{(\frac{y}{2})^2(\sqrt{2-cosx}+1)×4}]

= 2 × (1/4) × {1/(1 + 1)}

= (1/4)

Question 32. limx→π/4[(√cosx – √sinx)/(x – π/4)]

Solution:

We have,

limx→π/4[(√cosx – √sinx)/(x – π/4)]

On rationalizing the numerator, we get

= limx→π/4[(cosx – sinx)/{(√cosx + √sinx)(x – π/4)}]

\lim_{h\to0}[\frac{cos(\frac{π}{4}+h)-sin(\frac{π}{4}+h)}{(\frac{π}{4}+h-\frac{π}{4})(\sqrt{cos(\frac{π}{4}+h)}+\sqrt{sin(\frac{π}{4}+h)}}]

\lim_{h\to0}[\frac{-2×\frac{1}{\sqrt2}×sinh}{h(\sqrt{cos(\frac{π}{4}+h)}+\sqrt{sin(\frac{π}{4}+h)})}]

\lim_{h\to0}[\frac{-\sqrt2×sinh}{h(\sqrt{cos(\frac{π}{4}+h)}+\sqrt{sin(\frac{π}{4}+h)})}]

=-\sqrt2[\frac{1}{(\frac{1}{\sqrt2})^{\frac{1}{2}}+(\frac{1}{\sqrt2})^{\frac{1}{2}}}]

Question 33. limx→1[(1 – 1/x)/sinπ(x – 1)]

Solution:

We have,



limx→1[(1 – 1/x)/sinπ(x – 1)]

= limx→1[(x – 1)/x{sinπ(x – 1)}]

Let, y = x – 1

If x→1, then y→0

= limy→0[y/{(y + 1)sin(πy)}]

\lim_{y\to0}[\frac{1}{\frac{(y+1).sin(πy)}{y}}]

\lim_{y\to0}[\frac{1}{\frac{(y+1).sin(πy)}{πy}×π}]

= 1/{(1 + 0) × 1 × π}

= 1/π

Question 34. limx→π/6[(cot2x – 3)/(cosecx – 2)]

Solution:

We have,

limx→π/6[(cot2x – 3)/(cosecx – 2)]

= limx→π/6[(cosec2x – 1 – 3)/(cosecx – 2)]

= limx→π/6[(cosec2x – 22)/(cosecx – 2)]

= limx→π/6[{(cosecx + 2)(cosecx – 2)}/(cosecx – 2)]

= limx→π/6[(cosecx + 2)]

= cosec(π/6) + 2

= 2 + 2

= 4

Question 35. limx→π/4[(√2 – cosx – sinx)/(4x – π)2]

Solution:

We have,

limx→π/4[(√2 – cosx – sinx)/(4x – π)2]

= limx→π/4[(√2 – cosx – sinx)/{42(π/4 – x)2}]

=\lim_{x\to \frac{π}{2}}\frac{\sqrt2[1-(\frac{1}{\sqrt2}.cosx+\frac{1}{\sqrt2}.sinx)]}{4^2(\frac{π}{4}-x)^2}

=\lim_{x\to \frac{π}{2}}\frac{\sqrt{2}[1-cos(\frac{π}{4}-x)]}{4^2(\frac{π}{4}-x)^2}

=\lim_{x\to \frac{π}{2}}\frac{[2\sqrt{2}sin^2\frac{(\frac{π}{4}-x)}{2}]}{4^2(\frac{π}{4}-x)^2}

=2\sqrt{2}\lim_{x\to \frac{π}{2}}\frac{[sin^2\frac{(\frac{π}{4}-x)}{2}]}{4^2×\frac{(\frac{π}{4}-x)}{4}^2×4}

= 2√2/43

= (2√2 × √2)/(43√2)

= 4/(43√2)



= 1/(16√2)

Question 36. limx→π/2[{(π/2 – x)sinx – 2cosx}/{(π/2 – x) + cotx}]

Solution:

We have,

 limx→π/2[{(π/2 – x)sinx – 2cosx}/{(π/2 – x) + cotx}]

=\lim_{h\to0}\frac{[\frac{π}{2}-(\frac{π}{2}-h)]sin(\frac{π}{2}-h)-2cos(\frac{π}{2}-h)}{[\frac{π}{2}-(\frac{π}{2}-h)]+cot(\frac{π}{2}-h)}

= limh→0[(hcosh-2sinh)/(h+tanh)]

\lim_{h\to0}[\frac{cosh-2\frac{sinh}{h}}{1+\frac{tanh}{h}}]     (On dividing the numerator and denominator by h)

= (1 – 2)/(1 + 1)

= -1/2

Question 37. limx→π/4[(cosx – sinx)/{(π/4 – x)(cosx + sinx)}]

Solution:

We have,

limx→π/4[(cosx – sinx)/{(π/4 – x)(cosx + sinx)}]

On dividing the numerator and denominator by √2, we get

\lim_{x\to \frac{π}{4}}[\frac{\frac{cosx}{\sqrt2}-\frac{sinx}{\sqrt2}}{(\frac{π}{4}-x)(\frac{cosx+sinx}{\sqrt2})}]

\lim_{x\to \frac{π}{4}}[\frac{{\sqrt2}(sin\frac{π}{4}.cosx-cos\frac{π}{4}.sinx)}{(\frac{π}{4}-x)(cosx+sinx)}]

\lim_{x\to \frac{π}{4}}[\frac{{\sqrt2}[sin(\frac{π}{4}-x)]}{(\frac{π}{4}-x)(cosx+sinx)}]

\sqrt2\lim_{x\to \frac{π}{4}}[\frac{[sin(\frac{π}{4}-x)]}{(\frac{π}{4}-x)}]\lim_{x\to \frac{π}{4}}[\frac{1}{(cosx+sinx)}]

\frac{\sqrt2}{\frac{1}{\sqrt2}+\frac{1}{\sqrt2}}

= (√2 × √2)/2

= 1



Question 38. limx→π[{1 – sin(x/2)}/{cos(x/2)(cosx/4 – sinx/4}]

Solution:

We have,

limx→π[{1 – sin(x/2)}/{cos(x/2)(cosx/4 – sinx/4}]

Let, x = π + h

If x→π, then h→0

\lim_{h\to0}[\frac{1-sin(\frac{π+h}{2})}{cos(\frac{π+h}{2})[cos(\frac{π+h}{4})-sin(\frac{π+h}{4})]}]

=\lim_{h\to0}[\frac{1-sin(\frac{π}{2}+\frac{h}{2})}{cos(\frac{π}{4}+\frac{h}{2})[cos(\frac{π}{4}+\frac{h}{4})-sin(\frac{π}{4}+\frac{h}{4})]}]

\lim_{h\to0}[\frac{1-cos(\frac{h}{2})}{-sin(\frac{h}{2})[-\sqrt{2}sin(\frac{h}{2})]}]

\lim_{h\to0}[\frac{2sin^2(\frac{h}{4})}{-sin(\frac{h}{2})[-\sqrt{2}sin(\frac{h}{4})]}]

\lim_{h\to0}[\frac{2sin^2(\frac{h}{4})}{2sin(\frac{h}{4})cos(\frac{h}{4})[\sqrt{2}sin(\frac{h}{4})]}]

(\frac{1}{\sqrt2})\lim_{h\to0}\frac{1}{cos(\frac{h}{4})}

= 1/√2




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!