Question 1. limx→π/2[π/2 – x].tanx
Solution:
We have,
limx→π/2[π/2 – x].tanx
Let us considered, y = [π/2 – x]
Here, x→π/2, y→0
= limy→0[y.tan(π/2 – y)]
= limy→0[y.{sin(π/2 – y)/cos(π/2 – y)]
= limy→0[y.{cosy/siny}]
= limy→0[y/siny].cosy
= limy→0[cosy] [Since, limy→0[siny/y] = 1]
= 1
Question 2. limx→π/2[sin2x/cosx]
Solution:
We have,
limx→π/2[sin2x/cosx]
= limx→π/2[2sinx.cosx/cosx]
= 2Limx→π/2[sinx]
= 2
Question 3. limx→π/2[cos2x/(1 – sinx)]
Solution:
We have,
limx→π/2[cos2x/(1 – sinx)]
= limx→π/2[(1 – sin2x)/(1 – sinx)]
= limx→π/2[(1 – sinx)(1 + sinx)/(1 – sinx)]
= limx→π/2[(1 + sinx)]
= 1 + 1
= 2
Question 4. limx→π/2[(1 – sinx)/cos2x]
Solution:
We have,
limx→π/2[(1 – sinx)/cos2x]
= limx→π/2[(1 – sinx)/(1 – sin2x)]
= limx→π/2[(1 – sinx)/(1 – sinx)(1 + sinx)]
= limx→π/2[1/(1 + sinx)]
= 1/(1 + 1)
= 1/2
Question 5. limx→a[(cosx – cosa)/(x – a)]
Solution:
We have,
limx→a[(cosx – cosa)/(x – a)]
= ![Rendered by QuickLaTeX.com \lim_{x\to a}[\frac{-2sin(\frac{x+a}{2})sin(\frac{x-a}{2})}{x-a}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-e6af085450ab6e42c7ba3c2d36d3cdf0_l3.png)
=![Rendered by QuickLaTeX.com -2\lim_{x\to a}[sin\frac{(x+a)}{2}]\lim_{x\to a}[\frac{sin\frac{(x-a)}{2}}{\frac{(x-a)}{2}×2}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-7948c22c4e7021f3ff712840c36d88b2_l3.png)
= -2sin[(a + a)/2] × 1 × (1/2)
= -sina
Question 6. limx→π/4[(1 – tanx)/(x – π/4)]
Solution:
We have,
limx→π/4[(1 – tanx)/(x – π/4)]
Let us considered, y = [x – π/4]
Here, x→π/4, y→0
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{1-tan(y+\frac{π}{4})}{y}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-88616bad2f80eeadef4b6530aa83869e_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{1-\frac{(tany+tan\frac{π}{4})}{(1-tany.tan\frac{π}{4}}}{y}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-61fa9dd14424f3f9caa2865bbfb4c73c_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{(1-tany-1-tany)}{y(1-tany)}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-bc71cbb15f75948e62e37a095a55a65e_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{-2tany}{y(1-tany)}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-479a6d914ac3f4cfb481cceb8711f7cc_l3.png)
= ![Rendered by QuickLaTeX.com -2\lim_{y\to0}[\frac{tany}{y}]×\lim_{y\to0}[\frac{1}{(1-tany)}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-a60bfafec950f9f257a743db01d728ca_l3.png)
= -2 × 1 × [1/(1 – 0)]
= -2
Question 7. limx→π/2[(1 – sinx)/(π/4 – x)2]
Solution:
We have,
limx→π/2[(1 – sinx)/(π/4 – x)2]
Let us considered, y = [π/2 – x]
Here, x→π/2, y→0
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{1-sin(\frac{π}{2}-y)}{y^2}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-0a335237fbceab2e237e386fa4b1e4e8_l3.png)
= limy→0[(1 – cosy)/y2]
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{2sin^2\frac{y}{2}}{(\frac{y}{2})^2×4}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-e73e4f645ee6ea668cdca1a2c963a36b_l3.png)
= 2 × 1 × (1/4)
= (1/2)
Question 8. limx→π/3[(√3 – tanx)/(π – 3x)]
Solution:
We have,
limx→π/3[(√3 – tanx)/(π – 3x)]
Let us considered, y = [π/3 – x]
When, x→π/3, y→0
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{\sqrt3-tan(\frac{π}{3}-y)}{3y}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-26777b2c40793cee9133bc3a3b2c61ac_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{\sqrt3-\frac{(tan\frac{π}{3}-tany)}{(1+tany.tan\frac{π}{3}}}{3y}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-680e97f4d01163acc8b5893bd123cd4c_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{\sqrt3-\frac{(\sqrt{3}-tany)}{(1+\sqrt{3}.tany)}}{3y}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-0fc8295825aeec81dd0a1ab97a970341_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{4tany}{3y(1+\sqrt{3}tany)}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-278d87308719c6331e33dd8bb137625c_l3.png)
= ![Rendered by QuickLaTeX.com \frac{4}{3}\lim_{y\to0}[\frac{tany}{y}]×\lim_{y\to0}[\frac{1}{(1+\sqrt3tany)}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-8f68f852fe2c099736cc32b24a287829_l3.png)
= (4/3) × 1 × [1/(1 + 0)]
= (4/3)
Question 9. limx→a[(asinx – xsina)/(ax2 – xa2)]
Solution:
We have,
limx→a[(asinx – xsina)/(ax2 – xa2)]
= limx→a[(asinx – xsina)/{ax(x – a)}]
Let us considered, y = [x – a]
When, x→a, y→0
= limy→0[{asin(y + a) – (y + a)sina)}/{a(y + a)y}]
= limy→0[(a.siny.cosa + asina.cosy – ysina – asina)/{a(y + a)y}]
= limy→0[{a.siny.cosa + a.sina.(cosy – 1) – y.sina}/{a(y + a)y}]
= limy→0[{a.siny.cosa + a.sina.2sin2(y/2) – t.sina}/{a(y + a)y}]
= limy→0[a.siny.cosa/a(y + a)y] – limy→0[2.a.sina.sin2(y/2)/a(y + a)y] + limy→0[y.sina/a(a + y)y]
= [(a.cosa)/a2] – [(sina)/a2] + 0
= [(a.cosa – sina)/a2]
Question 10. limx→π/2[{√2 – √(1 + sinx)}/cos2x]
Solution:
We have,
limx→π/2[{√2 – √(1 + sinx)}/cos2x]
On rationalizing the numerator, we get
= limx→π/2[{2 – (1 + sinx)}/cos2x{√2 + √(1 + sinx)}]
= limx→π/2[(1 – sinx)/(1 – sin2x){√2 + √(1 + sinx)}]
= limx→π/2[(1 – sinx)/(1 – sinx)(1 + sinx){√2 + √(1 + sinx)}]
= limx→π/2[1/(1 + sinx){√2 + √(1 + sinx)}]
= 1/{(1 + 1)(√2 + √2)}
= 1/4√2
Question 11. limx→π/2[{√(2 – sinx) – 1}/(π/2 – x)2]
Solution:
We have,
limx→π/2[{√(2 – sinx) – 1}/(π/2 – x)2]
Let us considered, y = [π/2 – x]
Here, x→π/2, y→0
=![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{\sqrt{2-sin(\frac{π}{2}-y)}-1}{y^2}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-b85769f2d3bb0ade1cd9c77622deb2f2_l3.png)
= limy→0[{√(2 – cosy) – 1}/y2]
On rationalizing the numerator, we get
= limy→0[{(2 – cosy) – 1}/y2{√(2 – cosy) – 1}]
= limy→0[{1 – cosy}/y2{√(2 – cosy) – 1}]
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{2sin^2\frac{y}{2}}{y^2(\sqrt{2-cosx}+1)}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-8270f6bd4104aeec99a097c50e80b39c_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{2sin^2\frac{y}{2}}{(\frac{y}{2})^2(\sqrt{2-cosx}+1)×4}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-82fcece0d8d9405ac204c7da549e0b90_l3.png)
= 2/4(1 + 1)
= 1/4
Question 12. limx→π/4[(√2 – cosx – sinx)/(π/4 – x)2]
Solution:
We have,
limx→π/4[(√2 – cosx – sinx)/(π/4 – x)2]
= ![Rendered by QuickLaTeX.com \lim_{x\to \frac{π}{2}}\frac{\sqrt2[1-(\frac{1}{\sqrt2}.cosx+\frac{1}{\sqrt2}.sinx)]}{(\frac{π}{4}-x)^2}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-536e1ce83e3fc0330d8cdae21e93ceeb_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{x\to \frac{π}{2}}\frac{\sqrt{2}[1-cos(\frac{π}{4}-x)]}{(\frac{π}{4}-x)^2}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-0c77014d8725d05e07ade27ef0e1b0d7_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{x\to \frac{π}{2}}\frac{[2\sqrt{2}sin^2\frac{(\frac{π}{4}-x)}{2}]}{(\frac{π}{4}-x)^2}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-dbeeffd0c7335f82be58c24bdb3e9006_l3.png)
= ![Rendered by QuickLaTeX.com 2\sqrt{2}\lim_{x\to \frac{π}{2}}\frac{[sin^2\frac{(\frac{π}{4}-x)}{2}]}{\frac{(\frac{π}{4}-x)}{4}^2×4}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-718cd6e8e97dd725534a747963c8e025_l3.png)
= 2√2/4
= (1/√2)
Question 13. limx→π/8[(cot4x – cos4x)/(π – 8x)3]
Solution:
We have,
limx→π/8[(cot4x – cos4x)/(π – 8x)3]
= limx→π/8[(cot4x – cos4x)/83(π/8 – x)3]
Let us considered, (π/8 – x) = y
When x→π/8, y→0
=![Rendered by QuickLaTeX.com \lim_{x\to0}[\frac{cot(\frac{π}{2}-4x)-cos(\frac{π}{2}-4x)}{(π-8x)^3}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-b8d9a2fb788068e7b04a82addc6a32b0_l3.png)
= limx→0[(tan4x-sin4x)/83(π/8-x)3]
= limx→0[(sin4x/cos4x-sin4x)/83(π/8-x)3]
=![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{sin4y-sin4y.cos4y}{cos4y.8^3.y^3}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-46b1fcee2e433849d6e1d2af9b0e29ba_l3.png)
=![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{sin4y(1-cos4y)}{cos4y.8^3.y^3}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-f7c270aeac63803fbc6d1b4627c92abd_l3.png)
=![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{sin4y(2sin^22y)}{cos4y.8^3.y^3}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-847b8c652a585b974514f58ced839194_l3.png)
=
=
= (2 × 4 × 1 × 4 × 1)/(83)
= 1/16
Question 14. limx→a[(cosx – cosa)/(√x – √a)]
Solution:
We have,
limx→a[(cosx – cosa)/(√x – √a)]
= ![Rendered by QuickLaTeX.com \lim_{x\to a}[\frac{-2sin(\frac{x+a}{2})sin(\frac{x-a}{2})}{\sqrt{x}-\sqrt{a}}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-c341cf56aa9415c0e2a17d330d2d1061_l3.png)
On rationalizing the denominator, we get
= ![Rendered by QuickLaTeX.com \lim_{x\to a}[\frac{-2sin(\frac{x+a}{2})sin(\frac{x-a}{2})(\sqrt{x}+\sqrt{a})}{x-a}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-5687056d1dbc4fc5403f3d782f143c35_l3.png)
= ![Rendered by QuickLaTeX.com -2\lim_{x\to a}[sin\frac{(x+a)}{2}]\lim_{x\to a}[\frac{sin\frac{(x-a)}{2}}{\frac{(x-a)}{2}×2}]×\lim_{x\to a}(\sqrt{x}+\sqrt{a})](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-9d54aadf2f724f3b411e97346b6ea773_l3.png)
= -2 × sina × 1 × (1/2) × 2√a
= -2√a.sina
Question 15. limx→π[{√(5 + cosx) – 2}/(π – x)2]
Solution:
We have,
limx→π[{√(5 + cosx) – 2}/(π – x)2]
Let us considered, y = [π – x]
When, x→π, y→0
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{\sqrt{5+cos(π-y)}-2}{y^2}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-3ffff81a6bc9bba0e3e12f703265e663_l3.png)
= limy→0[{√(5 – cosy) – 2}/y2]
On rationalizing the numerator, we get
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{5-cosy-4}{y^2(\sqrt{5-cosy}-2)}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-8a1abc09e7aea11ce1d97a97280e6d13_l3.png)
= limy→0[{1 – cosy}/y2{√(5 – cosy)-2}]
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{2sin^2\frac{y}{2}}{y^2(\sqrt{5-cosx}+2)}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-b9ea0be39dde57f822f7dde3b0533f4f_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{y\to0}[\frac{2sin^2\frac{y}{2}}{(\frac{y}{2})^2(\sqrt{5-cosx}+2)×4}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-f82d02cadcac78356b862857fa804e7c_l3.png)
= 2 × (1/4) × {1/(2 + 2)}
= (1/8)
Question 16. limx→a[(cos√x – cos√a)/(x – a)]
Solution:
We have,
limx→a[(cos√x – cos√a)/(x – a)]
= ![Rendered by QuickLaTeX.com \lim_{x\to a}[\frac{-2sin(\frac{\sqrt{x}+\sqrt{a}}{2})sin(\frac{\sqrt{x}-\sqrt{a}}{2})}{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a})}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-27f07794c5c508555e80c0c70c60af73_l3.png)
= ![Rendered by QuickLaTeX.com -2\lim_{x\to a}[sin\frac{(\sqrt{x}+\sqrt{a})}{2}]\lim_{x\to a}[\frac{sin\frac{(\sqrt{x}-\sqrt{a})}{2}}{\frac{(\sqrt{x}-\sqrt{a})}{2}×2}]×\lim_{x\to a}\frac{1}{(\sqrt{x}+\sqrt{a})}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-0dbab45d8c99c8b99320970a6f89ab52_l3.png)
= -2sin√a × 1 × (1/2√a) × (1/2)
= -(sin√a/2√a)
Question 17. limx→a[(sin√x – sin√a)/(x – a)]
Solution:
We have,
limx→a[(sin√x – sin√a)/(x – a)]
= ![Rendered by QuickLaTeX.com \lim_{x\to a}[\frac{2cos(\frac{\sqrt{x}+\sqrt{a}}{2})sin(\frac{\sqrt{x}-\sqrt{a}}{2})}{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a})}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-0869c824d6a5cc8dde3633decea4cb84_l3.png)
= ![Rendered by QuickLaTeX.com 2\lim_{x\to a}[cos\frac{(\sqrt{x}+\sqrt{a})}{2}]\lim_{x\to a}[\frac{sin\frac{(\sqrt{x}-\sqrt{a})}{2}}{\frac{(\sqrt{x}-\sqrt{a})}{2}×2}]×\lim_{x\to a}\frac{1}{(\sqrt{x}+\sqrt{a})}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-7c2314aea5dfd265d91e7c5c92904c76_l3.png)
= 2cos√a × 1 × (1/2√a) × (1/2)
= (cos√a/2√a)
Question 18. limx→1[(1 – x2)/sin2πx]
Solution:
We have,
limx→1[(1 – x2)/sin2πx]
When, x→1, h→0
= limh→0[{1-(1-h)2}/sin2π(1-h)]
= limh→0[(2h-h2)/-sin2πh]
= limh→0[{h(2-h)}/sin2πh]
=![Rendered by QuickLaTeX.com -\lim_{h\to0}[\frac{(2-h)}{\frac{sin2πh}{h}}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-c990a0cd07044621c37b6c416b1ea34a_l3.png)
= ![Rendered by QuickLaTeX.com -\lim_{h\to0}[\frac{(2-h)}{(\frac{sin2πh}{2πh})×2π}]](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-fb476fd02ca33f9332220900ba09e0ac_l3.png)
= -2/2π
= -1/π
Question 19. limx→π/4[{f(x) – f(π/4)}/{x – π/4}]
Solution:
We have,
limx→π/4[{f(x) – f(π/4)}/{x – π/4}]
When, x→π/4, h→0
= limh→0[{f(π/4 + h) – f(π/4)}/{π/4 + h – π/4}]
It is given that f(x) = sin2x
= limh→0[{sin(π/2 + 2h) – sin(π/2)}/h]
= limh→0[(cos2h – 1)/h]
= limh→0[{-2sin2h}/h]
= -2Limh→0[(sinh/h)2] × h
= -2 × 1 × 0
= 0