Evaluate the following limits:
Question 1. 
Solution:
We know if
such that
exists, then 
We have,
= 
= 
= ex
Question 2. 
Solution:
We have,
= 
= 
= 
= 
= 
= 
Question 3. 
Solution:
We have,
= 
= 
= 
= 
= 
= 
= 
= 
= 
= e0
= 1
Question 4. 
Solution:
We have,
= 
= 
= 
= 
= 
= 
= 
= e1−0
= e
Question 5.
Solution:
We have,
= 
= 
= 
= 
= 
= 
= 
= eab−0
= eab
Question 6. 
Solution:
We have,
= 
= ![Rendered by QuickLaTeX.com e^{\lim_{x\to\infty}\left[\left(\frac{3x-2}{3x+2}\right)ln\left(\frac{x^2+2x+3}{2x^2+x+5}\right)\right]}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-39366d4b7809b90abf078a91c4bb07a1_l3.png)
= ![Rendered by QuickLaTeX.com e^{\lim_{x\to\infty}\left[\left(\frac{3-\frac{2}{x}}{3+\frac{2}{x}}\right)ln\left(\frac{1+\frac{2}{x}+\frac{3}{x^2}}{2+\frac{1}{x}+\frac{5}{x^2}}\right)\right]}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-2731ad66cd2678b926d5f1714930cf67_l3.png)
= 
= 
Question 7. 
Solution:
We have,
= 
= ![Rendered by QuickLaTeX.com e^{\lim_{x\to1}\left[{\frac{1-cos(x-1)}{(x-1)^2}}ln\left(\frac{x^3+2x^2+x+1}{x^2+2x+3}\right)\right]}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-d60668e7b3392bc96ba4ca21f11fe275_l3.png)
= ![Rendered by QuickLaTeX.com e^{\lim_{x\to1}\left[{\frac{2sin^2(\frac{x-1}{2})}{4\left(\frac{x-1}{2}\right)^2}}ln\left(\frac{x^3+2x^2+x+1}{x^2+2x+3}\right)\right]}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-beb91b37502a248670896855378353cc_l3.png)
= 
= 
= 
Question 8. ![Rendered by QuickLaTeX.com \lim_{x\to0}\left[\frac{e^x+e^{-x}-2}{x^2}\right]^{\frac{1}{x^2}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-cf0e290e9c6c6de77094984539b26cf7_l3.png)
Solution:
We have,
=
= ![Rendered by QuickLaTeX.com e^{\lim_{x\to0}\left[\frac{\frac{e^x+e^{-x}-2}{x^2}}{x^2}\right]}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-36205a6c253547271624667c179f6edf_l3.png)
Applying L’Hospital’s Rule, we get,
= 
= 
= 
= 
= 
Question 9. ![Rendered by QuickLaTeX.com \lim_{x\to{a}}\left[\frac{sinx}{sina}\right]^{\frac{1}{x-a}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-e043003a3df4c5794a48847d78fd475f_l3.png)
Solution:
We have,
= ![Rendered by QuickLaTeX.com \lim_{x\to{a}}\left[\frac{sinx}{sina}\right]^{\frac{1}{x-a}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-e043003a3df4c5794a48847d78fd475f_l3.png)
= ![Rendered by QuickLaTeX.com \lim_{x\to{a}}\left[1+(\frac{sinx}{sina}-1)\right]^{\frac{1}{x-a}}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-ae0963881981f109053388178e72ca98_l3.png)
= 
= 
= 
= 
= 
= 
= ecot a
Question 10. 
Solution:
We have,
= 
= 
= ![Rendered by QuickLaTeX.com e^{\lim_{x\to\infty}\left[(\frac{-x^2+2}{4x^2-1}){(\frac{x^3}{1+x}})\right]}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-3b0d163c6e610486b92ffdcc728cf565_l3.png)
= 
= e−∞
= 1/e∞
= 0