Related Articles

# Class 11 RD Sharma Solutions – Chapter 17 Combinations- Exercise 17.1 | Set 2

• Last Updated : 11 Feb, 2021

### Question 11. If 28C2r : 24C2r-4=225:11, find r.

Solution:

(28!/(28-2r)!2r!)/(24!/(24-2r+4)!(2r-4)!)=225/11

28x27x26x25/2r(2r-1)(2r-2)(2r-3)=225/11

28x27x26x25x11=225x(2r)(2r-1)(2r-2)(2r-3)

28x3x26x11=2r(2r-1)(2r-2)(2r-3)

14x2x3x13x2x11=2r(2r-1)(2r-2)(2r-3)

14x13x12x11=2r(2r-1)(2r-2)(2r-3)

2r=14

r=7

### Question 12. If nC4,nC5 and nC6 are in AP, then find n.

Solution:

We know that the A.P series is represented as a,a+d,a+2d,..

=>2.nC5=nC4+nC6

=>2(n!/(n-5)!5!)=(n!/(n-4)!4!)+n!/(n-6)!6!

=>2/(n-5)5=(1/(n-5)(n-4))+(1/30)

=>(2/(n-5)5)-(1/(n-5)(n-4))=1/30

=>(2(n-4)-5)30=(n-5)(n-4)5

=>60n-240-150=(n-5)(n-4)5

=>12n-78=(n-5)(n-4)

=>12n-78=n2-9n+20

=>n2-21n+98=0

=>n2-7n-14n+98=0

=>n(n-7)-14(n-7)=0

=>(n-7)(n-14)=0

=>n=7, 14

### Question 13. If 2nC3:nC2=44:3, find n.

Solution:

(2n!/(2n-3)!3!)/(n!/(n-2)!2!)=44/3

2n(2n-1)(2n-2)/3n(n-1)=44/3

2n(2n-1)(2n-2)=44n(n-1)

(2n-1)(2n-2)=22n-22

4n2-6n+2=22n-22

4n2-28n+24=0

n2-7n+6=0

(n-1)(n-6)=0

n=1 , 6

Let n=1

then 2(1)C3:2C2 is not possible because n<r.

So, n=6.

Solution:

16=r+r+2

16=2r+2

14=2r

r=7

=>7C4=7!/3!4!

=5x6x7/3×2

=35

### Question 15. If ∝=mC2, then find the value of ∝C2.

Solution:

C2=∝!/(∝-2)!2!

=(∝-1)(∝)/2

=(mC2-1)(mC2)/2

=(m!/(m-1)!2!-1)(m!/(m-2)!2!)/2

=(m(m-1)-2)(m(m-1))/8

=(m2-m-2)(m(m-1))/8

=(m+1)(m-1)(m-2)m/8

=1/8[(m-2)(m-1)(m)(m+1)]

### Question 16. Prove that the product of 2n consecutive negative integers is divisible by (2n)!.

Solution:

Let the 2n consecutive negative integers be -k,-k-1,-k-2,…,-k-(2n-1)

product of 2n consecutive negative integers=-kx-k-1x-k-2x….x-k-(2n-1)

=(-1)2nxkxk+1xk+2x…..xk+(2n-1)

=(-1)2nxkxk+1xk+2x…..xk+(2n-1)x(k-1)!/(k-1)!

=(-1)2nx(k+2n-1)!/(k-1)!

=(-1)2nx(k+2n-1)!(2n)!/(k-1)!(2n)!

=(-1)2nxk+2n-1C2nx(2n)!

Therefore the product of 2n consecutive negative integers is divided by (2n)!.

### Question 17. For all positive integers n, show that 2nCn+2nCn-1=1/2[2n+2Cn+1].

Solution:

LHS=2nCn+2nCn-1

=2n!/n!(2n-n)!+2n!/(n-1)!(2n-n+1)!

=2n!/n!n!+2n!/(n-1)!(n+1)!

=2n!/n(n-1)!n!+2n!/(n-1)!n!(n+1)

=2n!/n(n+1)(n-1)!n![n+1+n]

=2n!(2n+1)/n(n+1)(n-1)!n!

=(2n+1)!/n!(n+1)!

=(2n+2)(2n+1)!/n!(n+1)!(2n+2)

=(2n+2)!/n!(n+1)!(n+1)2

=(2n+2)!/(n+1)!(n+1)!2

=(2n+2)!/(n+1)!(2n+2-n-1)!2

=1/2[2n+2Cn+1]

= RHS

### Question 18. Prove that: 4nC2n:2nCn=[1x 3 x 5 x ….. x 4n-1]:[1 x 3 x 5 x …… x 2n-1]2.

Solution:

LHS=4nC2n/2nCn

=(4n!/2n!2n!)/(2n!/n!n!)

=[1 x 2 x ……x 4n] x[1 x2x3x….xn]2/[1x2x…x2n]3

=[1x3x5x…4n-1][2x4x6x…4n](n!)(n!)/[1x3x5x…x2n-1]2[2x4x6x…x2n]2(2n!)

=[1x3x5x..x4n-1]22n[1x2x3x..2n](n!)(n!)/[1x3x5x…x2n-1]2x22n[1x2x3x..xn]2(2n)!

=[1x3x5x…x4n-1]/[1x3x5x2n-1]2

=RHS

### Question 19. Evaluate Solution:

=>20C5+20C4+21C4+22C4+23C4

W.K.T nCr+nCr-1=n+1Cr

=>21C5+21C4+22C4+23C4

=>22C5+22C4+23C4

=>23C5+23C4

=> 24C5

### nCr/nCr-1=n-r+1/r

Solution:

LHS=(n!/r!(n-r)!)/(n!/(r-1)!(n-r+1)!

=(n-r)!(n-r+1)(r-1)!/(n-r)!(r)(r-1)!

=n-r+1/r

=RHS

### nxn-1Cr-1=(n-r+1)nCr-1

Solution:

LHS=n(n-1)!/(r-1)!(n-1-r+1)!

=n!/(r-1)!( n-r)!

=n!(n-r+1)/(r-1)!( n-r+1)(n-r)!

=n!(n-r+1)/(r-1)!(n-r+1)!

=(n-r+1)nCr-1

=RHS

### nCr/n-1Cr-1=n/r

Solution:

LHS=(n!/r!(n-r)!)/(n-1)!/(n-r)!(r-1)!

=n(n-1)!(r-1)!(n-r)!/r(r-1)!(n-r)!(n-1)!

=n/r

=RHS

### nCr+2 x nCr-1+ nCr-2=n+2Cr.

Solution:

W.K.T nCr+nCr-1=n+1Cr

LHS=nCr+nCr-1+nCr-1+nCr-2

=n+1Cr+n+1Cr-1

=n+2Cr

=RHS

Attention reader! All those who say programming isn’t for kids, just haven’t met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12.

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

My Personal Notes arrow_drop_up