For Q.1 to Q.10 express each complex number in form of a+ib
Question 1. (5i)
Solution:
Let the given number be a,
a= (5i)*
a= 
a= (-3)*i2
a= (-3)*(-1)
a= 3+0i
Question 2. i9+i19
Solution:
Let the given number be a,
a = i9 * (1+i10)
a = ((i4)2*i )(1 + (i4)2 (i2))
a = (1*i)(1+i2)
a = (i)*(0)
a = 0+0i
Question 3. i-39
Solution:
Let the given number be a and let z = i39 ,
z = (i)*(i2)19
z = (i)*(-1)19
z = -i
a = i-39
a = 1/i39
a = 1/z
a = 1/-i
a = (i4)/-i
a = -i3 = -(i2*i)
a = -1*-i
a = 0+i
Question 4. 3(7+7i) + i(7+7i)
Solution:
Let the given number be a,
a = 3*(7+7i)+i*(7+7i)
a = 21+21i+7i+7i2
a = 21+7i2+28i
a = 21-7+28i
a = 14+28i
Question 5. (1-i)-(-1+i6)
Solution:
Let the given number be a,
a = (1-i)-(-1+6i)
a = 1-i+1-6i
a = 2-7i
Question 6. (
)-(4+
)
Solution:
Let the given number be a,
a = 
a = 
a = 
a = (
)+(
)
a =
Question 7. [(
)+(4+
]-(
+i)
Solution:
Let the given number be a,
a = (
+
)+(4+
)-(
+i)
a = (
+4+
)+(
-i)
a = (
+4)+(
-i)
a = 
a = 
Question 8. (1-i)4
Solution:
Let the given number be a,
a = ((1-i)2)2
As we know , (a-b)2= (a2+b2-2ab)
a = (1+i2-2i)2
a = (1-1-2i)2
a = (-2i)2
a = 4i2
a = -4+0i
Question 9. (
+3i)3
Solution:
Let the given number be a,
a = (
+3i)3
As we know, (a+b)3= (a3+b3+3ab(a+b))
a = ((
)+(3i)3 +3(
)*(3i)(
+3i))
a = (
+(-27i)+ 3i*(
+3i))
a = (
+(-27i)+i+9i2)
a = ((
)-9+(-27)i+i)
a = ((
)-26i)
Question 10. (-2-(
))3
Solution:
Let the given number be a,
a = (-2-
)3
a = -((2+
)3)
As we know, (a+b)3= (a3+b3+3ab(a+b))
a = -((8)+(
)3 +3(2)*(
)(2+
))
a = -(8+(
)+ 2i*(2+
))
a = -(8-
+4i+
)
a = -(8-
+(
)+4i)
a = -(
+(
))
a = 