Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Class 11 NCERT Solutions- Chapter 13 Limits And Derivatives – Miscellaneous Exercise on Chapter 13 | Set 2

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): 

Question 16: \frac{cos x}{1+sin x}

Solution:

f(x) = \frac{cos x}{1+sin x}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{cos x}{1+sin x})

Using the quotient rule, we have

(\frac{u}{v})' = \frac{uv'-u'v}{u^2}\\ f'(x) = \frac{(1+sin x) \frac{d}{dx}(cos x) - (cos x)\frac{d}{dx}(1+sin x)}{(1+sin x)^2}\\ f'(x) = \frac{(1+sin x) (-sin x) - (cos x)(0+cos x)}{(1+sin x)^2}\\ f'(x) = \frac{(-sinx - sin^2 x)- (cos^2 x)}{(1+sin x)^2}\\ f'(x) = \frac{-sinx - (sin^2 x + cos^2 x)}{(1+sin x)^2}\\ f'(x) = \frac{-sinx - 1}{(1+sin x)^2}\\ f'(x) = \frac{-(sinx + 1)}{(1+sin x)^2}\\ f'(x) = \frac{-1}{(1+sin x)}

Question 17: \frac{sin x + cos x}{sin x - cos x}

Solution:

f(x) = \frac{sin x + cos x}{sin x - cos x}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{sin x + cos x}{sin x - cos x})

Using the quotient rule, we have

(\frac{u}{v})' = \frac{uv'-u'v}{u^2}\\ f'(x) = \frac{(sin x - cos x) \frac{d}{dx}(sin x + cos x) - (sin x + cos x)\frac{d}{dx}(sin x - cos x)}{(sin x - cos x)^2}\\ f'(x) = \frac{(sin x - cos x) (cos x + (- sin x)) - (sin x + cos x)(cos x - (-sin x))}{(sin x - cos x)^2}\\ f'(x) = \frac{(sin x - cos x) (cos x - sin x) - (sin x + cos x)(cos x + sin x)}{(sin x - cos x)^2}\\ f'(x) = \frac{- (sin x - cos x) (sin x - cos x)  - (sin x + cos x)(cos x + sin x)}{(sin x - cos x)^2}\\ f'(x) = - \frac{(sin x - cos x)^2 + (sin x + cos x)^2}{(sin x - cos x)^2}\\ f'(x) = - \frac{(sin^2 x - 2 sin x cos x + cos^2 x) + (sin^2 x - 2 sin x cos x + cos^2 x)}{(sin x - cos x)^2}\\ f'(x) = - \frac{1+1}{(sin x - cos x)^2}\\ f'(x) = \frac{-2}{(sin x - cos x)^2}

Question 18: \frac{sec x - 1}{sec x + 1}

Solution:

f(x) = \frac{sec x - 1}{sec x + 1}\\ f(x) = \frac{\frac{1}{cos x} - 1}{\frac{1}{cos x} + 1}\\ f(x) = \frac{\frac{1-cos x}{cos x}}{\frac{1+cos x}{cos x}}\\ f(x) = \frac{1-cos x}{1+cos x}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{1-cos x}{1+cos x})

Using the quotient rule, we have

(\frac{u}{v})' = \frac{uv'-u'v}{u^2}\\ f'(x) = \frac{(1+cos x) \frac{d}{dx}(1-cos x) - (1-cos x)\frac{d}{dx}(1+cos x)}{(1+cos x)^2}\\ f'(x) = \frac{(1+cos x) (0-(- sin x)) - (1-cos x)(0+(- sin x))}{(1+cos x)^2}\\ f'(x) = \frac{(1+cos x) (sin x) - (1-cos x)(- sin x)}{(1+cos x)^2}\\ f'(x) = \frac{(sin x + sin x \hspace{0.1cm}cos x) + (sin x - sin x\hspace{0.1cm} cos x)}{(1+cos x)^2}\\ f'(x) = \frac{(sin x + sin x)}{(1+cos x)^2}\\ f'(x) = \frac{2 sin x}{(1+cos x)^2}

Question 19: sinn x

Solution:

f(x) = sinn x

When n = 1,

f(x) = sin x

f'(x) = \frac{d}{dx}(sin x) = cos x

When n = 2,

f(x) = sin2 x = sin x sin x 

f'(x) = \frac{d}{dx}(sin x\hspace{0.1cm} sin x)

Using the product rule, we have

(uv)’ = uv’+vu’

f'(x) = (sin x) \frac{d}{dx}(sin x) + (sin x) \frac{d}{dx}(sin x)

f'(x) = (sin x) (cos x) + (sin x) (cos x) = 2 sin x cos x

When n = 3,

f(x) = sin3 x = sin2 x sin x

f'(x) = \frac{d}{dx}(sin^2\hspace{0.1cm} x sin x)

Using the product rule, we have

(uv)’ = uv’+vu’

f'(x) = (sin^2 x) \frac{d}{dx}(sin x) + (sin x) \frac{d}{dx}(sin^2 x)\\ f'(x) = (sin^2 x) (cos x) + (sin x) (2 sin x\hspace{0.1cm} cos x)\\ f'(x) = (sin^2 x \hspace{0.1cm}cos x) + (2 sin^2 x \hspace{0.1cm}cos x)\\ f'(x) = (sin^2 x\hspace{0.1cm} cos x)[1+2]\\ f'(x) = 3 sin^2 x \hspace{0.1cm}cos x

Pattern w.r.t n is seen here, as follows

\frac{d}{dx}(sin^n x) = n sin^{n-1}x\hspace{0.1cm} cos x

Let’s check this statement.

For P(n) = n sinn-1x cos x

For P(1),

P(1) = 1 sin1-1x cos x = cos x. Which is true.

n=k

P(k) = k sin^{k-1}x \hspace{0.1cm}cos x

n = k+1

P(k+1) = \frac{d}{dx}(sin^{k+1} x) = \frac{d}{dx}(sin^k x \hspace{0.1cm}sin x)

Using the product rule, we have

(uv)’ = uv’+vu’

= (sink x) \frac{d}{dx}(sin x)  + (sin x) \frac{d}{dx}(sin^k x)

= (sink x) (cos x) + (sin x) (k sink-1 x cos x)

= (sink x) (cos x)[k+1]

Hence proved for P(k+1).

So, \frac{d}{dx}(sin^n x) = n sin^{n-1}x \hspace{0.1cm}cos x  is true.

Question 20: \frac{a+bsin x}{c+dcos x}

Solution:

f(x) = \frac{a+bsin x}{c+dcos x}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{a+bsin x}{c+dcos x})

Using the quotient rule, we have

(\frac{u}{v})' = \frac{uv'-u'v}{u^2}\\ f'(x) = \frac{(c+dcos x) \frac{d}{dx}(a+bsin x) - (a+bsin x)\frac{d}{dx}(c+dcos x)}{(c+dcos x)^2}\\ f'(x) = \frac{(c+dcos x) [\frac{d}{dx}(a)+\frac{d}{dx}(bsin x)] - (a+bsin x)\frac{d}{dx}(c)+\frac{d}{dx}(dcos x)}{(c+dcos x)^2}

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = \frac{(c+dcos x) [0+b cos x] - (a+bsin x)[0+(-d sin x)]}{(c+dcos x)^2}\\ f'(x) = \frac{(c+dcos x) (b cos x) + (a+bsin x)(d sin x)}{(c+dcos x)^2}\\ f'(x) = \frac{(bc\hspace{0.1cm} cos x+db\hspace{0.1cm} cos^2 x) + (ad\hspace{0.1cm} sin x+db\hspace{0.1cm} sin^2 x)}{(c+d\hspace{0.1cm}cos x)^2}\\ f'(x) = \frac{(bc\hspace{0.1cm} cos x + db (cos^2 x + sin ^2 x) + ad \hspace{0.1cm}sin x)}{(c+d\hspace{0.1cm}cos x)^2}\\ f'(x) = \frac{(bc\hspace{0.1cm} cos x + db+ ad\hspace{0.1cm} sin x)}{(c+d\hspace{0.1cm}cos x)^2}

Question 21: \frac{sin(x+a)}{cos x}

Solution:

f(x) = \frac{sin(x+a)}{cos x}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{sin(x+a)}{cos x})

Using the quotient rule, we have

(\frac{u}{v})' = \frac{uv'-u'v}{u^2}\\ f'(x) = \frac{(cos x) \frac{d}{dx}(sin(x+a)) - (sin(x+a))\frac{d}{dx}(cos x)}{(cos x)^2}\\ f'(x) = \frac{(cos x) \frac{d}{dx}(sin(x+a)) - (sin(x+a))(- sin x)}{(cos x)^2}\\ f'(x) = \frac{(cos x) \frac{d}{dx}(sin(x+a)) + (sin(x+a))(sin x)}{(cos x)^2}

Let’s take g(x) = sin (x+a)

g'(x) = \frac{d}{dx}(sin(x+a))

g(x+h) = sin((x+h)+a)

From the first principle,

g'(x) = \lim_{h \to 0} \frac{g(x+h)-g(x)}{h}\\ g'(x) = \lim_{h \to 0} (\frac{sin((x+h)+a)-(sin(x+a))}{h})

Using the trigonometric identity,

sin A – sin B = 2 cos (\frac{A+B}{2})   sin (\frac{A-B}{2})

g'(x) = \lim_{h \to 0} (\frac{2 cos (\frac{x+h+a+(x+a)}{2}) sin (\frac{x+h+a-(x+a)}{2}}{h})\\ g'(x) = \lim_{h \to 0} (\frac{2 cos (\frac{2x+h+2a}{2}) sin (\frac{h}{2})}{h})\\ g'(x) = \lim_{h \to 0} (2 cos (\frac{2x+h+2a}{2})) \lim_{h \to 0} \frac{(sin (\frac{h}{2})}{h}))

Multiply and divide by 2, we have

g'(x) = 2 cos (\frac{2x+0+2a}{2})) \lim_{h \to 0} \frac{(sin (\frac{h}{2})}{h})) \times \frac{2}{2}\\ g'(x) = 2 cos (x+a) \lim_{h \to 0} \frac{(sin (\frac{h}{2})}{\frac{h}{2}})) \times \frac{1}{2}\\ g'(x) = cos (x+a) (1)\\ g'(x) = cos (x+a)

Hence, 

f'(x) = \frac{(cos x) \frac{d}{dx}(sin(x+a)) + (sin(x+a))(sin x)}{(cos x)^2}\\ f'(x) = \frac{(cos x) (cos(x+a)) + (sin(x+a))(sin x)}{(cos x)^2}

Using the trigonometric identity,

cos A cos B + sin A sin B = cos (A-B)

f'(x) = \frac{cos(x+a-x)}{(cos x)^2}\\ f'(x) = \frac{cos(a)}{(cos x)^2}

Question 22: x4(5sin x – 3cos x)

Solution:

f(x) = x4 (5sin x – 3cos x)

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^4 (5sin x - 3cos x))

Using the product rule, we have

(uv)’ = uv’ + vu’

f'(x) = (x^4) \frac{d}{dx}(5sin x - 3cos x) + (5sin x - 3cos x)\frac{d}{dx}(x^4)

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (x^4) [\frac{d}{dx}(5sin x) - \frac{d}{dx}(3cos x)] + (5sin x - 3cos x)(4x^{4-1})

f'(x) = (x4) [(5 cos x) – (3 (- sin x))] + (5sin x – 3cos x)(4x3)

f'(x) = (x4) [(5 cos x) + (3 sin x)] + (5sin x – 3cos x)(4x3)

f'(x) = (x3) [5x cos x + 3x sin x + 20sin x – 12 cos x]

Question 23: (x2+1) cos x

Solution:

f(x) = (x2+1) cos x

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}((x^2+1) cos x)

Using the product rule, we have

(uv)’ = uv’ + vu’

f'(x) = (x^2+1) \frac{d}{dx}(cos x) + (cos x)\frac{d}{dx}(x^2+1)

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (x^2+1) (- sin x) + (cos x)[\frac{d}{dx}(x^2)+\frac{d}{dx}(1)]

f'(x) = (x2+1) (- sin x) + (cos x)[(2x2-1)+0]

f'(x) = -x2 sin x- sin x + 2x cos x

Question 24: (ax^2+sin x) (p+q cos x)

Solution:

f(x) = (ax^2+sin x) (p+q cos x)

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}((ax^2+sin x) (p+q cos x))

Using the product rule, we have

(uv)’ = uv’ + vu’

f'(x) = (ax^2+sin x) \frac{d}{dx}(p+q cos x) + (p+q cos x)\frac{d}{dx}((ax^2+sin x))\\ f'(x) = (ax^2+sin x) [\frac{d}{dx}(p)+\frac{d}{dx}(q cos x)] + (p+q cos x)[\frac{d}{dx}(ax^2)+\frac{d}{dx}(sin x)]

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (ax^2+sin x) [0+q(- sin x)] + (p+q cos x)[a(2x^{2-1})+(cos x)]\\ f'(x) = (ax^2+sin x) (- q sin x) + (p+q cos x)[2ax+cos x]\\ f'(x) = - q sin x(ax^2 + sin x) + (p+q cos x)[2ax+cos x]

Question 25: (x + cos x)(x – tan x)

Solution:

f(x) = (x + cos x)(x – tan x)

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}((x + cos x)(x - tan x))

Using the product rule, we have

(uv)’ = uv’ + vu’

f'(x) = (x + cos x) \frac{d}{dx}(x - tan x) + (x - tan x)\frac{d}{dx}(x + cos x)\\ f'(x) = (x + cos x) [\frac{d}{dx}(x) - \frac{d}{dx}(tan x)] + (x - tan x)[\frac{d}{dx}(x) + \frac{d}{dx}(cos x)]

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (x + cos x) [1 - \frac{d}{dx}(tan x)] + (x - tan x)[1 + (- sin x)]

Let’s take g(x) = tan x

g'(x) = \frac{d}{dx}(tan x)\\ g(x) = tan x = \frac{sin \hspace{0.1cm}x}{cos \hspace{0.1cm}x}\\ g(x+h) = \frac{sin (x+h)}{cos (x+h)}

From the first principle,

g'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h)}{cos (x+h)}-\frac{sin\hspace{0.1cm} x}{cos\hspace{0.1cm} x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{cos \hspace{0.1cm}x \hspace{0.1cm}sin (x+h)-sin\hspace{0.1cm} x \hspace{0.1cm}cos(x+h)}{cos (x+h)cos \hspace{0.1cm}x}}{h}

Using the trigonometric identity,

sin a cos b – cos a sin b = sin (a-b)

g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h -x)}{cos (x+h)cos x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{sin (h)}{h \hspace{0.1cm}cos (x+h)\hspace{0.1cm}cos\hspace{0.1cm} x}\\ g'(x) = \frac{1}{cos\hspace{0.1cm} x} (\lim_{h \to 0} \frac{1}{cos(x+h)}) (\lim_{h \to 0} \frac{sin h}{h})\\ g'(x) = \frac{1}{cos \hspace{0.1cm}x} \frac{1}{cos(x+0)} (1)\\ g'(x) = \frac{1}{cos^2 x}

g'(x) = sec2x

Hence, 

f'(x) = (x + cos x) [1 - \frac{d}{dx}(tan x)]  + (x – tan x)[1 + (- sin x)]

f'(x) = (x + cos x) [1 – (sec2 x)] + (x – tan x)[1 – sin x]

f'(x) = (x + cos x) [tan2 x] + (x – tan x)[1 – sin x]

f'(x) = tan2 x(x + cos x) + (x – tan x)[1 – sin x]

Question 26: \frac{4x+5sin x}{3x+7cos x}

Solution:

f(x) = \frac{4x+5sin x}{3x+7cos x}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{4x+5sin x}{3x+7cos x})

Using the quotient rule, we have

(\frac{u}{v})' = \frac{uv'-u'v}{u^2}\\ f'(x) = \frac{(3x+7cos x) \frac{d}{dx}(4x+5sin x) - (4x+5sin x)\frac{d}{dx}(3x+7cos x)}{(3x+7cos x)^2}\\ f'(x) = \frac{(3x+7cos x) [\frac{d}{dx}(4x)+\frac{d}{dx}(5sin x)] - (4x+5sin x)[\frac{d}{dx}(3x)+\frac{d}{dx}(7cos x)]}{(3x+7cos x)^2}

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = \frac{(3x+7cos x) [4+(5 cos x)] - (4x+5sin x)[3 + 7(- sin x)]}{(3x+7cos x)^2}\\ f'(x) = \frac{(3x+7cos x) [4+5 cos x] - (4x+5sin x)[3 - 7 sin x]}{(3x+7cos x)^2}\\ f'(x) = \frac{(12x+28 cos x+15x cos x + 35 cos^2x) - [(12x + 15sin x)-(28x sin x + 35 sin^2 x)]}{(3x+7cos x)^2}\\ f'(x) = \frac{(12x+28 cos x+15x cos x + 35 cos^2x)- (12x + 15sin x-28x sin x - 35 sin^2 x)}{(3x+7cos x)^2}\\ f'(x) = \frac{(12x+28 cos x+15x cos x + 35 cos^2x - 12x - 15sin x+28x sin x + 35 sin^2 x)}{(3x+7cos x)^2}\\ f'(x) = \frac{(28 cos x+15x cos x + 35 (cos^2x + sin^2x) - 15sin x + 28x sin x)}{(3x+7cos x)^2}\\ f'(x) = \frac{(28 cos x+15x cos x + 35 - 15sin x + 28x sin x)}{(3x+7cos x)^2}

Question 27: \frac{x^2 cos(\frac{\pi}{4})}{sin x}

Solution:

f(x) = \frac{x^2 cos(\frac{\pi}{4})}{sin x}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{x^2 cos(\frac{\pi}{4})}{sin x})\\ \frac{d}{dx}(f(x)) = cos(\frac{\pi}{4}) \frac{d}{dx}(\frac{x^2)}{sin x})

Using the quotient rule, we have

(\frac{u}{v})' = \frac{uv'-u'v}{u^2}\\ f'(x) = (cos(\frac{\pi}{4}) [\frac{(sin x) \frac{d}{dx}(x^2) - (x^2)\frac{d}{dx}(sin x)}{(sin x)^2}]

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = cos(\frac{\pi}{4}) [\frac{(sin x) (2x^{2-1}) - (x^2) (cos x)}{(sin x)^2}]\\ f'(x) = cos(\frac{\pi}{4}) [\frac{2x sin x - x^2 cos x)}{(sin x)^2}]\\ f'(x) = [\frac{(x cos(\frac{\pi}{4})(2 sin x - x cos x)}{(sin x)^2}]

Question 28: \frac{x}{1+tan x}

Solution:

f(x) = \frac{x}{1+tan x}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{x}{1+tan x)})

Using the quotient rule, we have

(\frac{u}{v})' = \frac{uv'-u'v}{u^2}\\ f'(x) = \frac{(1+tan x) \frac{d}{dx}(x) - (x)\frac{d}{dx}(1+tan x)}{(1+tan x)^2}

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = \frac{(1+tan x) (1) - (x)[\frac{d}{dx}(1)+\frac{d}{dx}(tan x)]}{(1+tan x)^2}\\ f'(x) = \frac{(1+tan x) - (x)[0+\frac{d}{dx}(tan x)]}{(1+tan x)^2}

Let’s take g(x) = tan x

g'(x) = \frac{d}{dx}(tan x)\\ g(x) = tan x = \frac{sin \hspace{0.1cm}x}{cos \hspace{0.1cm}x}\\ g(x+h) = \frac{sin (x+h)}{cos (x+h)}

From the first principle,

g'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h)}{cos (x+h)}-\frac{sin\hspace{0.1cm} x}{cos\hspace{0.1cm} x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{cos \hspace{0.1cm}x \hspace{0.1cm}sin (x+h)-sin\hspace{0.1cm} x \hspace{0.1cm}cos(x+h)}{cos (x+h)cos \hspace{0.1cm}x}}{h}

Using the trigonometric identity,

sin a cos b – cos a sin b = sin (a-b)

g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h -x)}{cos (x+h)cos x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{sin (h)}{h \hspace{0.1cm}cos (x+h)\hspace{0.1cm}cos\hspace{0.1cm} x}\\ g'(x) = \frac{1}{cos\hspace{0.1cm} x} (\lim_{h \to 0} \frac{1}{cos(x+h)}) (\lim_{h \to 0} \frac{sin h}{h})\\ g'(x) = \frac{1}{cos \hspace{0.1cm}x} \frac{1}{cos(x+0)} (1)\\ g'(x) = \frac{1}{cos^2 x}

g'(x) = sec2x

Hence, f'(x) = \frac{(1+tan x) - (x)[0+\frac{d}{dx}(tan x)]}{(1+tan x)^2}\\ f'(x) = \frac{1+tan x - x sec^2x}{(1+tan x)^2}

Question 29: (x + sec x) (x-tan x)

Solution:

f(x) = (x + sec x) (x-tan x)

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}((x + sec x) (x-tan x))

Using the product rule, we have

(uv)’ = uv’ + vu’

f'(x) = (x + sec x) \frac{d}{dx}(x - tan x) + (x - tan x)\frac{d}{dx}(x + sec x)\\ f'(x) = (x + sec x) [\frac{d}{dx}(x) - \frac{d}{dx}(tan x)] + (x - tan x)[\frac{d}{dx}(x) + \frac{d}{dx}(sec x)]

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (x + sec x) [1 - \frac{d}{dx}(tan x)] + (x - tan x)[1 + \frac{d}{dx}(sec x)]

Let’s take g(x) = tan x

g'(x) = \frac{d}{dx}(tan x)\\ g(x) = tan x = \frac{sin \hspace{0.1cm}x}{cos \hspace{0.1cm}x}\\ g(x+h) = \frac{sin (x+h)}{cos (x+h)}

From the first principle,

g'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h)}{cos (x+h)}-\frac{sin\hspace{0.1cm} x}{cos\hspace{0.1cm} x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{cos \hspace{0.1cm}x \hspace{0.1cm}sin (x+h)-sin\hspace{0.1cm} x \hspace{0.1cm}cos(x+h)}{cos (x+h)cos \hspace{0.1cm}x}}{h}

Using the trigonometric identity,

sin a cos b – cos a sin b = sin (a-b)

g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h -x)}{cos (x+h)cos x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{sin (h)}{h \hspace{0.1cm}cos (x+h)\hspace{0.1cm}cos\hspace{0.1cm} x}\\ g'(x) = \frac{1}{cos\hspace{0.1cm} x} (\lim_{h \to 0} \frac{1}{cos(x+h)}) (\lim_{h \to 0} \frac{sin h}{h})\\ g'(x) = \frac{1}{cos \hspace{0.1cm}x} \frac{1}{cos(x+0)} (1)\\ g'(x) = \frac{1}{cos^2 x}

g'(x) = sec2x

Now, let’s take h(x) = sec x = \frac{1}{cos x}

h(x+h) = \frac{1}{cos (x+h)}

From the first principle,

h'(x) = \lim_{h \to 0} \frac{h(x+h)-h(x)}{h}\\ h'(x) = \lim_{h \to 0} \frac{\frac{1}{cos (x+h)}-\frac{1}{cos x}}{h}\\ h'(x) = \lim_{h \to 0} \frac{\frac{cos x-cos (x+h)}{cos (x+h)cos x}}{h}\\ h'(x) = \frac{1}{cos x}\lim_{h \to 0} \frac{\frac{cos x-cos (x+h)}{cos (x+h)}}{h}

Using the trigonometric identity,

cos a – cos b = -2 sin (\frac{a+b}{2})   sin (\frac{a-b}{2})

h'(x) = \frac{1}{cos x}\lim_{h \to 0} \frac{\frac{-2 sin (\frac{x+x+h}{2}) sin (\frac{x-(x+h)}{2})}{cos (x+h)}}{h}\\ h'(x) = \frac{1}{cos x}\lim_{h \to 0} \frac{-2 sin (\frac{2x+h}{2}) sin (\frac{-h}{2})}{hcos (x+h)}\\ h'(x) = \frac{2}{cos x}\lim_{h \to 0} \frac{sin (\frac{2x+h}{2}) sin (\frac{h}{2})}{hcos (x+h)}\\ h'(x) = \frac{2}{cos x}\lim_{h \to 0} \frac{sin (\frac{2x+h}{2})}{cos (x+h)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{h}

Multiply and divide by 2, we have

h'(x) = \frac{2}{cos x}\lim_{h \to 0} \frac{sin (\frac{2x+h}{2})}{cos (x+h)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{h} \times \frac{2}{2}\\ h'(x) = \frac{2}{cos x} \frac{sin (\frac{2x+0}{2})}{cos (x+0)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}} \times \frac{1}{2}\\ h'(x) = \frac{1}{cos x}(\frac{sin (x)}{cos (x)}) \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}}\\ h'(x) = \frac{tan x}{cos x}(1) \\ h'(x) = tan x \hspace{0.1cm}sec x

Hence, f'(x) = (x + sec x) [1 - \frac{d}{dx}(tan x)] + (x - tan x)[1 + \frac{d}{dx}(sec x)]\\ f'(x) = (x + sec x) [1 - (sec^2x)] + (x - tan x)[1 + (sec x \hspace{0.1cm}tan x)]\\ f'(x) = (x + sec x) [tan^2x)] + (x - tan x)[1 + (sec x \hspace{0.1cm}tan x)]

Question 30: \frac{x}{sin^nx}

Solution:

f(x) = \frac{x}{sin^nx}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{x}{sin^nx})

Using the quotient rule, we have

(\frac{u}{v})' = \frac{uv'-u'v}{u^2}\\ f'(x) = \frac{(sin^nx) \frac{d}{dx}(x) - (x)\frac{d}{dx}(sin^nx)}{(sin^nx)^2}

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = \frac{(sin^nx) (1) - (x)\frac{d}{dx}(sin^nx)}{(sin^nx)^2}

Let’s take, g(x) = sinn x

When n = 1,

g(x) = sin x

g'(x) = \frac{d}{dx}(sin x) = cos x

When n = 2,

g(x) = sin^2 x = sin x sin x\\ g'(x) = \frac{d}{dx}(sin x\hspace{0.1cm} sin x)

Using the product rule, we have

(uv)’ = uv’+vu’

g'(x) = (sin x) \frac{d}{dx}(sin x) + (sin x) \frac{d}{dx}(sin x)

g'(x) = (sin x) (cos x) + (sin x) (cos x) = 2 sin x cos x

When n = 3,

g(x) = sin3 x = sin2 x sin x

g'(x) = \frac{d}{dx}(sin^2 x\hspace{0.1cm} sin x)

Using the product rule, we have

(uv)’ = uv’+vu’

g'(x) = (sin^2 x) \frac{d}{dx}(sin x) + (sin x) \frac{d}{dx}(sin^2 x)\\ g'(x) = (sin^2 x) (cos x) + (sin x) (2 sin x \hspace{0.1cm}cos x)\\ g'(x) = (sin^2 x \hspace{0.1cm}cos x) + (2 sin^2 x\hspace{0.1cm} cos x)\\ g'(x) = (sin^2 x\hspace{0.1cm} cos x)[1+2]\\ g'(x) = 3 sin^2 x\hspace{0.1cm} cos x

Pattern w.r.t n is seen here, as follows

\frac{d}{dx}(sin^n x) = n sin^{n-1}x\hspace{0.1cm} cos x

Let’s check this statement.

For P(n) = n sin^{n-1}x \hspace{0.1cm}cos x

For P(1),

P(1) = 1 sin^{1-1}x \hspace{0.1cm}cos x = cos x . Which is true.

n=k

P(k) = k sin^{k-1}x \hspace{0.1cm}cos x

n = k+1

P(k+1) = \frac{d}{dx}(sin^{k+1} x) = \frac{d}{dx}(sin^k x \hspace{0.1cm}sin x)

Using the product rule, we have

(uv)’ = uv’+vu’

= (sin^k x) \frac{d}{dx}(sin x) + (sin x) \frac{d}{dx}(sin^k x)\\ = (sin^k x) (cos x) + (sin x) (k sin^{k-1}x \hspace{0.1cm}cos x)\\ = (sin^k x) (cos x)[k+1]

Hence proved for P(k+1).

So, \frac{d}{dx}(sin^n x) = n sin^{n-1}x \hspace{0.1cm}cos x  is true.

So, the given equation will be

f'(x) = \frac{(sin^nx) (1) - (x)\frac{d}{dx}(sin^nx)}{sin^{2n}x}\\ f'(x) = \frac{(sin^nx) - x(n sin^{n-1}x cos x)}{sin^{2n}x}


My Personal Notes arrow_drop_up
Last Updated : 30 Apr, 2021
Like Article
Save Article
Similar Reads
Related Tutorials